Физические величины и измерения
Объектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан. У физических величин есть качественные и количественные характеристики. Качественное различие физических величин отражается в их размерности. Обозначение размерности установлено международным стандартом ИСО, им является символ dim*. Таким образом, размерность длины, массы и времени: dim*l = L, dim*m = M, dim*t = T. Для производной величины размерность выражается посредством размерности основных величин и степенного одночлена: dim*Y = L k × M 1 × T m, где k, I, m – показатели степени размерности основных величин. Показатель степени размерности может принимать различные значения и разные знаки, может быть как целым, так и дробным, может принимать значение ноль. Если при определении размерности производной величины все показатели степени размерности равны нулю, то основание степени, соответственно, принимает значение единицы, таким образом, величина является безразмерной. Размерность производной величины может также определяться как отношение одноименных величин, тогда величина является относительной. Размерность относительной величины может также быть логарифмической. Количественная характеристика объекта измерения – это его размер, полученный в результате измерения. Самый элементарный способ получить сведения о размере определенной величины объекта измерения – это сравнить его с другим объектом. Результатом такого сравнения не будет точная количественная характеристика, оно позволит лишь выяснить, какой из объектов больше (меньше) по размеру. Сравниваться могут не только два, но и большее число размеров. Если размеры объектов измерения расположить по возрастанию или по убыванию, то получится шкала порядка. Процесс сортировки и расположения размеров по возрастанию или по убыванию по шкале порядка называется ранжированием. Для удобства измерений определенные точки на шкале порядка фиксируются и называются опорными, или реперными точками Фиксированным точкам шкалы порядка могут ставиться в соответствие цифры, которые часто называют баллами. У реперных шкал порядка есть существенный недостаток: неопределенная величина интервалов между фиксированными реперными точками. В этом плане преимущество есть у шкалы интервалов Шкалой интервалов является, например, шкала измерения времени. Она поделена на большие интервалы – годы, большие интервалы поделены на меньшие – сутки. С помощью шкалы интервалов можно определить не только, какой из размеров больше, но и насколько один размер больше другого. Недостаток шкалы интервалов заключается в том, что с ее помощью нельзя определить, во сколько раз данный размер больше другого, потому что на шкале интервалов зафиксирован только масштаб, а начало отсчета не фиксировано и может устанавливаться произвольно. Самым оптимальным вариантом является шкала отношений. Шкалой отношений является, например, шкала температуры Кельвина. На данной шкале есть фиксированное начало отсчета – абсолютный ноль (температура, при которой прекращается тепловое движение молекул). Основное преимущество шкалы отношений состоит в том, что с ее помощью можно определить, во сколько раз один размер больше или меньше другого. Размер объекта измерения может быть представлен в разных видах. Это зависит от того, на какие интервалы разбита шкала, с помощью которой измеряется данный размер. Например, время движения может быть представлено в следующих видах: T = 1 ч = 60 мин = 3600 с. Это значения измеряемой величины. 1, 60, 3600 – это числовые значения данной величины. Значение величины может быть вычислено с помощью основного уравнения измерения, которое имеет вид: Q = X [Q], где Q – значение величины; X – числовое значение данной величины в установленной для нее единице; [ Q ] – установленная для данного измерения единица.
|