Классификация лазеров
· Твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла). В качестве активаторов обычно используются ионы редкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырёхуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах · Полупроводниковые лазеры. Формально также являются твердотельными, но традиционно выделяются в отдельную группу, поскольку имеют иной механизм накачки (инжекция избыточных носителей заряда через p-n переход или гетеропереход, электрический пробой в сильном поле, бомбардировка быстрыми электронами), а квантовые переходы происходят между разрешёнными энергетическими зонами, а не между дискретными уровнями энергии. Полупроводниковые лазеры — наиболее употребительный в быту вид лазеров. Кроме этого применяются в спектроскопии, в системах накачки других лазеров, а также в медицине (см. фотодинамическая терапия). · Лазеры на красителях. Тип лазеров, использующий в качестве активной среды раствор флюоресцирующих с образованием широких спектров органических красителей. Лазерные переходы осуществляются между различными колебательными подуровнями первого возбуждённого и основного синглетных электронных состояний. Накачка оптическая, могут работать в непрерывном и импульсном режимах. Основной особенностью является возможность перестройки длины волны излучения в широком диапазоне. Применяются в спектроскопических исследованиях. · Газовые лазеры — лазеры, активной средой которых является смесь газов и паров. Отличаются высокой мощностью, монохроматичностью, а также узкой направленностью излучения. Работают в непрерывном и импульсном режимах. В зависимости от системы накачки газовые лазеры разделяют на газоразрядные лазеры, газовые лазеры с оптическим возбуждением и возбуждением заряженными частицами (например, лазеры с ядерной накачкой, в начале 80-х проводились испытания систем противоракетной обороны на их основе, однако, без особого успеха), газодинамические и химические лазеры. По типу лазерных переходов различают газовые лазеры на атомных переходах, ионные лазеры, молекулярные лазеры на электронных, колебательных и вращательных переходах молекул и эксимерные лазеры. · Газодинамические лазеры — газовые лазеры с тепловой накачкой, инверсия населённостей в которых создаётся между возбуждёнными колебательно-вращательными уровнями гетероядерных молекул путём адиабатического расширения движущейся с высокой скоростью газовой смеси (чаще N2+CO2+He или N2+CO2+Н2О, рабочее вещество — CO2). · Эксимерные лазеры — разновидность газовых лазеров, работающих на энергетических переходах эксимерных молекул (димерах благородных газов, а также их моногалогенидов), способных существовать лишь некоторое время в возбуждённом состоянии. Накачка осуществляется пропусканием через газовую смесь пучка электронов, под действием которых атомы переходят в возбуждённое состояние с образованием эксимеров, фактически представляющих собой среду с инверсией населённостей. Эксимерные лазеры отличаются высокими энергетическими характеристикам, малым разбросом длины волны генерации и возможности её плавной перестройки в широком диапазоне. · Химические лазеры — разновидность лазеров, источником энергии для которых служат химические реакции между компонентами рабочей среды (смеси газов). Лазерные переходы происходят между возбуждёнными колебательно-вращательными и основными уровнями составных молекул продуктов реакции. Для осуществления химических реакций в среде необходимо постоянное присутствие свободных радикалов, для чего используются различные способы воздействия на молекулы для их диссоциации. Отличаются широким спектром генерации в ближней ИК-области, большой мощностью непрерывного и импульсного излучения. · Лазеры на свободных электронах — лазеры, активной средой которых является поток свободных электронов, колеблющихся во внешнем электромагнитном поле (за счёт чего осуществляется излучение) и распространяющихся с релятивистской скоростью в направлении излучения. Основной особенностью является возможность плавной широкодиапазонной перестройки частоты генерации. Различают убитроны и скаттроны, накачка первых осуществляется в пространственно-периодическом статическом поле ондулятора, вторых — мощным полем электромагнитной волны. Существуют также мазеры на циклотронном резонансе и строфотроны, основанные на тормозном излучении электронов, а также флиматроны, использующие эффект черенковского и переходного излучений. Поскольку каждый электрон излучает до 108 фотонов, лазеры на свободных электронах являются, по сути, классическими приборами и описываются законами классической электродинамики. · Квантовые каскадные лазеры − полупроводниковые лазеры, которые излучают в среднем и дальнем инфракрасном диапазоне. В отличие от обычных полупроводниковых лазеров, которые излучают посредством вынужденных переходов между разрешенными электронными и дырочными уровнями, разделенными запрещенной зоной полупроводника, излучение квантовых каскадных лазеров возникает при переходе электронов между слоями гетероструктуры полупроводника и состоит из двух типов лучей, причем вторичный луч обладает весьма необычными свойствами и не требует больших затрат энергии. · Волоконный лазер — лазер, резонатор которого построен на базе оптического волокна, внутри которого полностью или частично генерируется излучение. При полностью волоконной реализации такой лазер называется цельноволоконным, при комбинированном использовании волоконных и других элементов в конструкции лазера он называется волоконно-дискретным или гибридным. · Вертикально-излучающие лазеры (VCSEL) — «Поверхностно-излучающий лазер с вертикальным резонатором» — разновидность диодного полупроводникового лазера, излучающего свет в направлении, перпендикулярном поверхности кристалла, в отличие от обычных лазерных диодов, излучающих в плоскости, параллельной поверхности пластин. · Другие виды лазеров, развитие принципов которых на данный момент является приоритетной задачей исследований (рентгеновские лазеры, гамма-лазеры и др.).
|