Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лабораторная работа № 6. определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме ДЛЯ воздуха методом стоячей волны





 

 

ЛАБОРАТОРНАЯ РАБОТА № 11

 

 

определение отношения теплоёмкости при постоянном давлении к теплоёмкости при постоянном объёме ДЛЯ воздуха методом стоячей волны

 

 

САНКТ-ПЕТЕРБУРГ

2011 г.

 

Цель работы - определить g = C p/ CV методом стоячей звуковой волны.

 

Общие сведения

Рассмотрим, как распространяется звуковая волна в закрытой цилиндрической трубе, заполненной воздухом. В момент времени t = 0 мембрана телефона T (рис.1) начинает двигаться вправо с постоянной скоростью . Молекулы воздуха вблизи мембраны придут в движение и тоже будут перемещаться вправо со скоростью . Непосредственно около мембраны возникнет область сжатия, давление внутри которой р = р 0 + D р, где р 0 - первоначальное давление воздуха. Сжатый слой воздуха передаст импульс молекулам, расположенным справа, приводя таким образом в движение соседний слой. В течение второй части периода мембрана движется влево, создавая справа от себя область разрежения, в которую устремляются молекулы из сжатого слоя. Таким образом, молекулы воздуха совершают колебательное движение в направлении колебаний мембраны. В среде при этом распространяются, чередуясь, области сжатия и разрежения воздуха (области повышенного и пониженного давления), что и представляет собой бегущую звуковую волну. Звук является продольной волной, т.к. частицы среды совершают колебания вдоль направления распространения. Будем описывать распространение волны с помощью фазовой скорости - скорости распространения в пространстве поверхностей, образованных частицами, совершающими колебания в одинаковой фазе.

Импульс силы , с которой мембрана в течение времени D t давит на газ

, (1)

где S - площадь мембраны, D p – избыточное давление, обусловленное силой .

С другой стороны, импульс внешней силы равен приращению импульса (количества движения), которое получил газ:

, (2)

где - плотность сжатого воздуха; - плотность воздуха в начальный момент времени; - масса сжатого воздуха; - длина столба воздуха (путь, который прошла волна за время ). Объединяя равенства (1) и (2), получим

. (3)

До движения мембраны масса воздуха m в отрезке трубы длиной составляла r 0 . При смещении мембраны на u D t плотность воздуха меняется, и в этом случае его массу можно представить (рис. 1)

,

или

,

После простых алгебраических преобразований получим

. (4)

Подставив равенство (3) в формулу (4), можно записать

. (5)

Если изменения плотности и давления малы (Dr << r0 и D p << p 0), то скорость распространения волны

. (6)

С точки зрения термодинамики процесс распространения звуковой волны в газе можно рассматривать как адиабатический, так как изменение давления происходит так быстро, что смежные области среды не успевают обмениваться теплом.

Адиабатический процесс описывается уравнением pVg = const. Так как V = M/ r (здесь М - масса газа), то p (M/r) g = const. Продифференцировав это равенство с учётом изменения давления и плотности, получим

,

откуда

,

т.е. в соответствии с формулой (6)

, (7)

где r - плотность газа при данном давлении и температуре, r = p m /RT; m - молярная масса газа; R - универсальная газовая постоянная; T - абсолютная температура.

Подставив r в уравнение (7), получим

,

откуда

. (8)

Таким образом, для вычисления g необходимо определить скорость распространения звуковых колебаний. В работе эта скорость определяется методом стоячей волны.

Если в трубе, один конец которой закрыт, возбудить звуковые колебания, в ней в результате наложения двух встречных волн (прямой и отражённой) с одинаковыми частотами и амплитудами будут возникать стоячие волны. В определенных точках амплитуда стоячей волны равна сумме амплитуд обоих колебаний и имеет максимальное значение; такие точки называются пучностями. В других точках результирующая амплитуда равна нулю, такие точки называются узлами. Расстояние между ближайшим узлом и пучностью равно l/4, где l - длина бегущей звуковой волны. Таким образом, измерив расстояние между узлом и пучностью или между двумя ближайшими пучностями (l/2), можно найти длину бегущей звуковой волны l. Фазовая скорость волны рассчитывается через длину волны по соотношению

u = ln, (9)

где n - частота колебаний.

 

 

Порядок выполнения работы

 

Описание экспериментальной установки.

В экспериментальную установку (рис.2) входят: стеклянная труба, в которой создаётся стоячая волна, звуковой генератор (ЗГ), микровольтметр, частотомер (Ч). В стеклянную трубу вмонтированы неподвижный микрофон (М) и телефон (Т), который может свободно перемещаться вдоль оси трубы.

Звуковой генератор вырабатывает синусоидальное напряжение звуковой частоты, которое подается на телефон. Переменный ток приводит в колебательное движение мембрану телефона, являющуюся излучателем звуковой волны. Отражённая от противоположной стенки трубы волна движется навстречу излучаемой и происходит их наложение. В результате в трубе возникает стоячая звуковая волна. В микрофоне происходит преобразование механической энергии волны в энергию электрического тока, величина которого измеряется микровольтметром. Частота звуковой волны устанавливается лимбом на генераторе, точное значение частоты измеряется частотомером. При перемещении телефона вдоль трубы ток в цепи микрофона будет меняться от минимального, когда микрофон попадает в узел, до максимального, когда он попадает в пучность. Таким образом, следя за показаниями микровольтметра, можно найти положения нескольких пучностей стоячей волны и вычислить ее длину.

Последовательность проведения измерений:

1) включить ЗГ и частотомер в сеть, прогреть приборы в течение 3-5-ти минут;

2) после прогрева установить необходимую частоту колебаний на звуковом генераторе (указанную преподавателем), измеряя точное значение частоты частотомером;

3) перемещая телефон вдоль трубы, найти ближайшее к левому концу трубы положение телефона lk, при котором показание микровольтметра максимально, записать его в таблицу;

4) зафиксировать еще два-три положения, при которых показания микровольтметра максимальны;

5) вычислить разность между соседними отсчётами d lk = lklk – 1 для всех наблюдавшихся пучностей, усреднить полученные значения;

6) по среднему расстоянию между пучностями рассчитать длину бегущей волны l= 2× и скорость по формуле (9);

7) повторить пп.3-6 для 4-5-ти значений частоты в интервале 1000-1800 Гц.

8) измерить температуру воздуха в помещении;

9) рассчитать g по формуле (8) при m = 2,9×10-2 кг/моль (воздух), R = 8,31 Дж/(моль×К);

10) результаты измерений и расчётов оформить в виде таблицы:

 

 

Таблица 1.

Физ. величина n lk d lk l u g
Ед. измерения Номер опыта            
1.            
           
           
средние     l = 2×    
2.            
           
n            

 

11) найти среднее значение ;

12) рассчитать погрешность косвенных измерения g.

 

Контрольные вопросы

 

1. Что такое теплоемкость, молярная теплоемкость, удельная теплоемкость? Как они связаны? Какова размерность теплоемкости? От чего зависит молярная теплоемкость?

2. Почему Cp > CV с точки зрения первого начала термодинамики?

3. Что такое бегущая и стоячая звуковая волна? Каковы ее основные характеристики?

4. Каков механизм распространения звуковой волны?

5. Что представляет собой звуковая волна с точки зрения термодинамики? Каким уравнением и графиками описывается рассматриваемый процесс?

6. От чего зависит скорость распространения звуковой волны?

Лабораторная работа № 6

Цель работы:освоение способов построения прямолинейных границ по годографам преломленных волн.

 







Дата добавления: 2015-08-27; просмотров: 1690. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия