Тепловой баланс системы Земля-атмосфера
Тепловой баланс системы «Земля – атмосфера» это алгебраическая сумма тепла, получаемого Землей в целом (вместе с атмосферой) от внешних источников и отдаваемого через атмосферу в космическое пространство. Для вывода теплового баланса системы «Земля – атмосфера» следует рассмотреть приход и расход тепловой энергии в вертикальной колонне, приходящей через всю атмосферу и внешние слои гидро- и литосферы до уровней, где прекращаются заметные сезонные (или суточные) колебания температуры. Теплообмен между выделенной колонной и мировым пространством характеризуется радиационным балансом Rs, равным разности поглощенной солнечной радиации во всем объеме колонны и общего длинноволнового излучения из этого объема (рисунок 22). Рисунок 22 – Схема энергетического баланса системы «Земля – атмосфера» (Будыко, 1977)
Величину Rs считают положительной, если она характеризует приток тепла к системе «Земля – атмосфера». Приток тепла через нижнее основание колонны практически равен 0. Потоки тепла через боковую поверхность колонны зависят от горизонтального переноса тепла в атмосфере Fa и гидросфере F0; величина Fa аналогична F0, ее значение характеризует приход и расход тепла в колонне воздуха в связи с действием атмосферной адвекции и макротурбулентности. Кроме теплообмена через поверхность колонны на ее тепловой баланс оказывают влияние источники тепла («+»или «-»), расположенные внутри колонны. Среди них основное значение имеет приход и расход тепла в связи с фазовыми превращениями воды (испарение и конденсация). Приход тепла от конденсации в атмосфере равен разности прихода и расхода тепла на конденсацию и испарение капель воды в облаках и туманах. Над значительной поверхностью и для больших периодов осреднения разность величин конденсации и испарения в атмосфере равна сумме осадков r, в этом случае приход тепла будет равен Lr. Расход тепла на испарение с земной поверхности (разность между затратами энергии на испарение и приходом тепла от конденсации на поверхности почвы, водоемов, растительности) равен LE. Общее влияние фазовых переходов воды можно выразить как L×(r–E). Из других членов теплового баланса следует учесть величину изменения теплосодержания внутри колонны за период суммирования Bs. Остальные члены теплового баланса для системы «Земля–атмосфера» не играет значительной роли и могут не учитываться. Уравнение теплового баланса системы «Земля – атмосфера» имеет следующий вид: Rs = L(E – r)+ Fs+ Bs, где Fs= Fa= F0. Все члены правой части этого уравнения считаются положительными, если они характеризуют расход тепла. Для среднего годичного периода величина Bs, очевидно, близка к 0, и уравнение теплового баланса примет вид: Rs = L*(E–r)+ Fs. Для условий суши еще проще: Rs = L*(E–r) + Fa. Т.к. для всего земного шара Е=r за год, а горизонтальный поток тепла в атмосфере и гидросфере, очевидно, равен 0, то для биосферы в целом Rs=0. Таким образом, Земля как планета находится в тепловом равновесии. Тепловой баланс атмосферы складывается из радиационного баланса атмосферы Ra; тепла, поступающего от поверхности Pa; тепла, выделяющегося в атмосфере при конденсации Lr и горизонтального переноса тепла (адвекции) Fa(Аd). Ra всегда отрицателен, Lr и Pa – положительны. Адвекция тепла приводит в среднем к переносу его из низких широт в высокие. Таким образом, она означает расход тепла в низких широтах и приход в высоких. Ra = Lr+Pa. Ra =+30, Lr =+23, Pa =+7. Тепловой баланс атмосферы можно получить не только суммированием, но и путем вычитания членов уравнения теплового баланса системы «Земля – атмосфера» и уравнения теплового баланса земной поверхности. Rs=L*(E–r) + Fs+Bs, R = LE+ F0+ B0+Р, следовательно: Ra= -Lr+ Fa-P+ Ba. Для среднего годичного периода: Ra= Fa – Lr – P.
|