Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пьезоэлектрическая форсунка





Самым совершенным устройством, обеспечивающим впрыск топлива, является пьезоэлектрическая форсунка (пьезофорсунка). Форсунка устанавливается на дизельных двигателях, оборудованных системой впрыска Common Rail.

Преимуществами пьезофорсунки являются быстрота срабатывания (в 4 раза быстрее электромагнитного клапана), и как следствие возможность многократного впрыска топлива в течение одного цикла, а также точная дозировка впрыскиваемого топлива.

Это стало возможным благодаря использованию пьезоэффекта в управлении форсункой, основанного на изменении длины пьезокристалла под действием напряжения. Конструкция пьезоэлектрической форсунки включает пьезоэлемент, толкатель, переключающий клапан и иглу, помещенные в корпусе.

В работе пьезофорсунки, также как и электрогидравлической форсунки, используется гидравлический принцип. В исходном положении игла посажена на седло за счет высокого давления топлива. При подаче электрического сигнала на пьезоэлемент, увеличивается его длина, которая передает усилие на поршень толкателя. Открывается переключающий клапан, топливо поступает в сливную магистраль. Давление выше иглы падает. Игла за счет давления в нижней части поднимается и производится впрыск топлива.

Количество впрыскиваемого топлива определяется:

· длительностью воздействия на пьезоэлемент;

· давлением топлива в топливной рампе.

1.2 Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Топливовоздушная смесь в такой силовой установке формируется за пределами цилиндра, а именно во впускном коллекторе (это, естественно, если не учитывать возможность непосредственного впрыска). Окончательное перемешивание паров бензина и воздуха происходит в конце такта сжатия. Тогда в камере сгорания двигателя образуется топливная смесь, называемая гомогенной и распределяемая равномерно по объему. Сжатие приводит к повышению температуры смеси, которая нагревается до 500°С, что значительно ниже той температуры, которая необходима для воспламенения бензина. После этого наступает черед свечей зажигания, которые дают искру и поджигают смесь.

1.3 Дизельный двигатель - поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.

Все недостатки бензиновых двигателей нивелированы принципом работы дизельных моторов. Судите сами. В цилиндре такого двигателя сжимается только воздух, на который воздействует давление в 30-50 бар. В результате сжатия воздух нагревается до 900°С. При этом в камере сгорания распыляется солярка перед верхней мертвой точкой поршня. Мелкие капли дизельного топлива испаряются, и образуется топливовоздушная смесь. Кстати, образование смеси в дизельном двигателе происходит на порядок быстрее, чем в бензиновом. Именно поэтому получается неоднородная или, как ее еще называют, гетерогенная смесь, которая самовоспламеняется и отлично сгорает.

Двигатель на пропане — двигатель внутреннего сгорания, использующий в качестве топлива сжиженные углеводородные газы(пропан-бутан).

Газовый двигатель работает по тепловому циклу Отто, когда теплота подводится к рабочему телу при постоянном объёме. Отличие от бензиновых двигателей, работающих по этому циклу — более высокая степень сжатия (около 17-ти). Объясняется это тем, что используемые газы имеют более высокое октановое число, чем бензин.

Как правило, газовые двигатели редко выпускаются серийно, за исключением применения их для специализированных задач в науке и технике.

Для работы на транспорте используются газовые двигатели, переоборудованные из традиционных бензиновых, а с недавнего времени — после развития в Европе соответствующих технологий — и из традиционных дизельных.

По причине более высокой степени сжатия дизельные двигатели более полно раскрывают потенциал газового двигателя по сравнению с бензиновыми «собратьями». Однако, переоборудование дизелей под использование газа имеет свои особенности. По причине того, что газ не воспламеняется, подобно дизельному топливу, при увеличении давления в цилиндре на такте сжатия, необходимо дооборудование дизелей системой зажигания (подобно бензиновым вариантам), либо использование в топливо-воздушной смеси части дизельного топлива в виде т. н. «запальной дозы» (от 30 до 50 % от всего количества топлива). В остальном, применение газа на дизельных двигателях все больше приобретает популярность, и обещает в ближайшие годы получить широкое распространение, как в виде газовых двигателей в «чистом виде», так и в универсальных газодизелях.

В целом, переоборудование двигателей внутреннего сгорания на транспорте под газовый двигатель существенно экономит средства их владельцам по причине более низкой отпускной цены на такой вид топлива.

Автомобиль, оснащённый газобаллонным оборудованием (ГБО), использует в качестве топлива сжиженный нефтяной газ(смесь газов «пропан-бутан»).

На автомобиле сжиженная пропан-бутановая смесь находится в стальных цельнотянутых (без сварных швов) баллонах, установленных на раме, под полом салона автобуса или в багажнике легкового автомобиля. Сжиженный газ находится в баллоне под давлением 16 атмосфер (баллон рассчитан на максимальное давление 25 атмосфер).

На баллоны для сжиженного газа устанавливается специальный мультиклапан, через который производится заправка баллона и отбор газа в топливную систему двигателя. Мультиклапан является важным компонентом газобаллонного оборудования, обеспечивающим его безопасное использование. Он включает в себя:

· Заправочный и расходный вентиль

· Указатель уровня газа в баллоне. Представляет собой поплавок на рычаге, находящийся внутри баллона, и связанный с ним стрелочный индикатор либо электронную схему, передающую информацию о положении поплавка на индикатор внутри салона автомобиля

· Обратный клапан в заправочной магистрали, предотвращающий вытекание газа через неё

· Скоростной клапан в расходной магистрали, перекрывающий подачу газа при превышении его расходом некоторого порогового значения. Порог подобран так, чтобы клапан закрывался только при разрыве расходной магистрали (предотвращая, таким образом, сильную утечку газа), и оставался открытым при обычном уровне расхода газа.

· Стопорный клапан, предотвращающий наполнение баллона газом более чем на 80-90 %. Клапан находится в заправочной магистрали и закрывается при достижении указанной степени заполнения баллона. Ограничение максимального наполнения баллона необходимо для предотвращения чрезмерного повышения давления в нём в случае нагрева (например, на солнце в жаркую погоду)

Мультиклапан также может содержать в себе предохранительный клапан (стравливает газ при высоком давлении, например при перегреве баллона), пробку из легкоплавкого сплава (не допустить взрыва баллона при пожаре, сбросить газ в атмосферу, чтобы он просто сгорел) и дополнительный вентиль для отбора в двигатель паровой фазы при запуске холодного двигателя. Однако, наличие данных компонент в мультиклапане не обязательно.

Газ из общей магистрали поступает в испаритель (подогреватель) — теплообменник, включён в систему жидкостного охлаждения, после прогрева двигателя газ подогревается (сжиженный газ испаряется) до температуры ≈75 °C. Далее газ проходит через магистральный фильтр.

Затем газ поступает в двухступенчатый газовый редуктор, где его давление снижается до рабочего. Современные газовые редукторы обычно совмещают эти два устройства (испаритель и собственно редуктор) в едином устройстве.

Далее, газ поступает в смеситель (или в карбюратор-смеситель или в смесительную проставку под штатным карбюратором, определяется конструкцией топливной аппаратуры). В силу того, что в смесителе происходит смешивание двух газов, их конструкция существенно проще чем конструкция бензиновых карбюраторов[3], в которых происходит смешивание двух разных фаз — жидкой (бензин) и газообразной (воздух), из-за чего в конструкции карбюратора имеются довольно сложные системы для поддержания постоянного состава смеси при разных расходах.

Двигатели разделяются на:

· специальные (или модифицированные), предназначенные только для работы на газе, бензин используется краткосрочно при неисправности газовой аппаратуры, когда нет возможности произвести ремонт на месте;

· универсальные, рассчитанные на длительную работу как на газе, так и на бензине.

Бензобак и топливный насос на автомобилях с газовыми двигателями сохраняются.

В холодное время года запуск двигателя, работающего на сжиженном газе производится путём отбора паровой фазы, после прогрева испарителя происходит переключение на жидкую фазу. Однако, для бензиновых двигателей, переоборудованных для работе на газе, крайне рекомендуется пуск двигателя осуществлять на бензине, а на газ двигатель переключать после прогрева до температуры 40-50 °C.

Двигатель на метане - дизельный двигатель является двигателем, воспламенение топлива в котором осуществляется при нагревании от сжатия. Стандартный дизельный двигатель не может работать на газовом топливе, потому что метан обладает существенно более высокой температурой воспламенения чем дизельное топливо (ДТ — 300-330 С, метан — 650 С), которая не может быть достигнута при степенях сжатия, используемых в дизельных двигателях.

Второй причиной, по которой дизельный двигатель не сможет работать на газовом топливе является явление детонации, т.е. не штатного (взрывообразного горения топлива, которое возникает при избыточной степени сжатия. Для дизельных двигателей используются степень сжатия топливо-воздушной смеси в 14-22 раза, метановый двигатель может иметь степень сжатия до 12-16 раз.

Поэтому, для перевода дизельного двигателя в газомоторный режим потребуется сделать две основных вещи:

· Снизить степень сжатия двигателя

· Установить искровую систему зажигания

После этих доработок Ваш двигатель будет работать только на метане. Возврат в дизельный режим возможен, только после проведения специальных работ.

Подробнее о сути выполняемых работ смотрите в разделе «Как именно осуществляется перевод дизеля на метан»

Есть расхожее мнение, что на метане двигатель теряет в мощности до 25%. Это мнение справедливо для двухтопливных «бензин-газ» двигателей и отчасти справедливо для дизельных безнадувных двигателей.

Для современных двигателей, оснащенных надувом это мнение ошибочно.

Высокий прочностной ресурс исходного дизельного двигателя, предназначенный для работы с степенью сжатия 16-22 раза и высокое октановое число газового топлива позволяют нам использовать степень сжатия 12-14 раз. Такая высокая степень сжатия позволяет получать те же (и да же большие) удельные мощности, работая на стехеометрических топливных смесях. Однако выполнение при этом норм токсичности выше ЕВРО-3 не представляется возможным, так же вырастает тепловая напряженность конвертированного двигателя.

Современные надувные дизели (особенно с промежуточным охлаждением надувного воздуха) позволяют работать на существенно обедненным смесях с сохранением мощности исходного дизельного двигателя, удержав тепловой режим в прежних пределах и уложившись в нормы токсичности ЕВРО-4.

Для безнадувных дизельных двигателей мы предлагаем 2 альтернативы: или снижение рабочей мощности на 10-15% или применение системы впрыска воды в впускной коллектор с целью поддержания приемлемой рабочей температуры и достижения норм токсичности выбросов ЕВРО-4

Вид типичной зависимостей мощности от оборотов двигателя, по типам топлива:

Максимальная величина крутящего момента не изменится и даже может быть немного увеличена. Однако точка достижения максимального момента сместится в сторону более высоких оборотов. Это конечно не приятно, но на практике водители практически не жалуются и быстро привыкают, особенно если имеется запас по мощности двигателя.

Радикальным решением проблемы смещения пика момента для газового двигателя является замена турбины на переразмеренную турбину специального типа с электромагнитным клапаном перепуска на высоких оборотах. Однако высокая стоимость такого решения не дает нам возможности применять его при индивидуальной конвертации.

Ресурс двигателя существенно увеличится. Так как горение газа происходит более равномерно чем дизельного топлива, степень сжатия газового двигателя меньше чем у дизельного и газ не содержит в отличие от дизельного топлива посторонних примесей.

Масло Газовые двигателя более требовательны к качеству масла. Мы рекомендуем применять качественные всесезонные масла классов SAE 15W-40, 10W-40 и менять масло не реже 10.000 км.

Если есть возможность, желательно использовать специальные масла, типа ЛУКОЙЛ ЭФФОРСЕ 4004 или Shell Mysella LA SAE 40. Это не обязательно, но с ними двигатель прослужит очень долго.

Вследствие большего содержания воды в продуктах сгорания газовоздушных смесей в газовых двигателях могут возникать проблемы водостойкости моторных масел, так же газовые двигатели более чувствительны к образованию зольных отложений в камере сгорания. Поэтому сульфатная зольность масел для газовых двигателей ограничивается более низкими значениями, а требования к гидрофобности масла повышаются.

Вы будете очень удивленны! Газовый двигатель — очень тихая машина по сравнению с дизельным. Уровень шума снизится на 10-15 Дб по приборам, что соответствует в 2-3 более тихой работе по субъективным ощущениям.

 







Дата добавления: 2015-08-17; просмотров: 1251. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия