Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Зинченко В.П., Мунипов В.М. 21 страница





 

где р — перцентиль. В результате получили, что 75% используемой группы населе­ния заключены в пределах 12,5—87,5 перцентилей, что соответст­вует интервалу М±1,15а.

Средние арифметические значения признака следует использо­вать в редких случаях ввиду того, что оборудование, созданное с учетом только средних размеров тела для большого количества людей, будет неудобным.

Конструкция оборудования должна обеспечивать легкость использования и удобство эксплуатации по меньшей мере для 90 % потребителей..

Определение границ интервалов, в которых учитывается нeoб­ходимый объем выборки, связано с ориентацией в пространстве параметров оборудования и функциональным назначением этих параметров.

Неизменяемые высотные размеры оборудования при работе на нем только мужчин или только женщин должны рассчитываться исходя из значения антропометрического признака, соответствую­щего 95-ому перцентилю каждой половой группы, при работе мужчин и женщин — 95-ому перцентилю мужской группы.

Рациональная рабочая поза людей более низкого роста должна обеспечиваться путем регулирования изменяемых параметров ра­бочего места (рабочее сиденье, подставка для ног).

Неизменяемые размеры оборудования, связанные с вертикаль­ной досягаемостью в нижних зонах, рассчитываются исходя из значения антропометрического признака, соответствующего 95-ому перцентилю каждой половой группы, если оборудование предназ­начено для работы только мужчин или только женщин; при работе на оборудовании мужчин и женщин — 95-ому перцентилю мужской группы.

Неизменяемые размеры вертикальных досягаемостей в верх­них зонах рассчитываются исходя из значения антропомет­рического признака, соответствующего 5-ому перцентилю каждой половой группы, если оборудование предназначено для работы только мужчин или только женщин; при работе на оборудовании мужчин и женщин — 5-ому перцентилю мужской группы.

Неизменяемые размеры оборудования с ограничением их мак­симального значения, такие как зоны видимости, расстояния до индикаторов, контрольных точек, поручней, т. е. связанные с го­ризонтальной досягаемостью, размах движения органов управле­ния и т. п., которые влияют на качество работы оператора или ограничены размерами тела, должны выбираться, исходя из зна­чения 5-го перцентиля соответствующей группы населения. Иными словами, неизменяемые по ширине и глубине размеры оборудова­ния в том случае, когда на нем работают только мужчины или только женщины, должны рассчитываться, исходя из значения антропометрического признака, соответствующего 5-ому перценти­лю каждой половой группы, при работе на оборудовании мужчин или женщин — 5-ому перцентилю мужской группы.

Размеры оборудования с ограничением их минимального значе­ния (не должны быть меньше), такие как проходы, подходы, люки, безопасные промежутки и т. п., которые обеспечивают прохожде­ние тела или его частей, должны соответствовать значению антропометрического признака соответствующему 95-ому перцен­тилю соответствующей группы населения.

Нижние и верхние границы измеряемых параметров оборудо­вания при работе на нем только мужчин или только женщин должны рассчитываться, исходя из значений антропометрических признаков, соответствующих 5-ому и 95-ому перцентилю каждой половой группы. При работе на оборудовании мужчин и женщин — нижняя граница должна соответствовать: 5-ому перцентилю женской группы, верхняя — 95-ому перцентилю мужской группы.

Высотные размеры проектируемого оборудования должны со­ответствовать продольным размерам тела с учетом положения последнего. Не следует использовать размеры тела, взятые в по­ложении «стоя», при расчете рабочих мест для работы сидя.

При расчете высотных размеров оборудования следует поль­зоваться антропометрическими данными молодого поколения (до 30 лет), а при расчете поперечных, глубинных размеров — данны­ми населения старшего возраста (30—40 лет).

Точность использования антропометрических данных зависит от величины порогов мышечно-суставной чувствительности челове­ка v от эргономической значимости элемента оборудования. Вели­чина порогов мышечно-суставной чувствительности при различении линейных и угловых характеристик рабочего места свидетель­ствует о том, что человек легко (субъективно и объективно) раз­личает изменение высотных характеристик рабочего места (рабо­чая поверхность, сиденье, подставка для ног) на 8—40 мм и соответственно угловых характеристик на 1°. Этими данными следует руководствоваться при определении допустимых отклоне­ний от оптимальных параметров рабочего места и округлении цифровых значений антропометрических признаков.

Все элементы рабочего места, которые имеют непосредственное соприкосновение с телом человека, должны по возможности точно соответствовать его антропометрическим данным (размеры си­денья, рабочей поверхности, подставки для ног, органов управле­ния и т. п.). Округление допускается до 1 см. При расчете мини­мальных пространств, занимаемых телом человека в разных положениях и позах, могут быть допуски 2—3 см [3].

 

Рабочие сиденья

 

Приспособления, обеспечивающие поддержание рабочей позы для выполнения работы в положении «сидя», различны: кресла, стулья, табуреты различных типов, откидные сиденья (стенные), сиденья-опоры. Рабочие сиденья классифицируются по степени стабилизации рабочей позы, по набору элементов рабочего сиденья, по типу конструкции элементов сиденья, по степени подвижности, по сте­пени мягкости, по обеспечению виброгашения и т. п.

Выбор типа рабочих сидений определяется конкретным харак­тером и условиями трудовой деятельности человека. Различают рабочие сиденья для длительного и кратковременного пользо­вания.

Рабочие сиденья для длительной работы в положении «сидя» должны включать обязательные элементы: сиденье и спинку для стульев; сиденье, спинку и подлокотники для кресел. Дополнитель­ными элементами рабочих кресел могут быть подголовники. Под­ставки для ног рекомендуются для всех видов работ, связанных с длительным сохранением положения «сидя».

Конструкция рабочего сиденья, предназначенного для длитель­ной работы в положении «сидя», должна обеспечивать поддержа­ние основной рабочей позы, не затруднять рабочих движений, смену позы и положения, обеспечивать условия для отдыха.

Основная рабочая поза предусматривает такое положение кор­пуса, которое способствует проявлению естественных изгибов позвоночного столба (поясничного, грудного и шейного) и не вызывает значительного мышечного напряжения. При этом не рас­тягиваются мышцы и связки позвоночника, не расслабляются мышцы брюшного пресса и тазового дна, межпозвоночные хрящи не принимают асимметричную форму, не сдавливаются органы грудной клетки (сердце, легкие). Несоблюдение вышеперечислен­ных условий приводит к патологическим изменениям опорно-дви­гательного аппарата человека и другим нарушениям (остеохонд­роз, спондилез, радикулит, сутулость, опущение внутренних орга­нов, отвислость живота и др).

При работе сидя величина углов в тазобедренных, коленных и голеностопных суставах должна Сыть не менее 90°. Оптималь­ные позные углы в суставах 98—103°.

Если трудовой процесс требует длительного поддержания жест­ко фиксированной рабочей позы без возможности ее смены (в промежутки времени не менее 30—40 мин), то рекомендуется полумягкое сиденье (кресло) с регулируемыми параметрами, уста­навливаемыми в соответствии с индивидуальными антропометри­ческими данными работающего, профилированное (с двумя углами наклона), с высокой спинкой. Для снятия общего напряжения ре­комендуется в перерывах изменять позу и положение тела.

В тех случаях, когда имеются условия для произвольного изме­нения рабочей позы в пределах рабочей зоны, можно использовать плоское, горизонтальное или с наклоном назад (3—8°) сиденье с профилированной или непрофилированной обычной или пояс­ничной спинкой.

Независимо от профессионального назначения имеется несколь­ко требований, общих для сидений длительного пользования.

1. Сиденье должно обеспечивать позу, способствующую умень­шению статической работы мышц.

2. Сиденье в целом и его элементы должны создавать условия для возможности изменения рабочей позы.

3. Конструкция сиденья не должна затруднять деятельности сердечно-сосудистой, дыхательной и пищеварительной сис­темы; она не должна вызывать болезненных ощущений, возникающих в результате давления элементов сиденья на тело человека..

4. Глубина сиденья не должна быть чрезмерно большой.

5. Передний край сиденья должен быть закруглен.

6. Свободное перемещение сиденья относительно рабочей поверхности, в случае обширной рабочей зоны — вращение сиденья.

7. Наличие ряда регулируемых параметров (высота сиденья, угол наклона спинки, высота спинки).

8. В конструкции сидений должны быть учтены требования-безопасности, общие и частные.

9. В большинстве видов производства, за исключением тех, где существуют специфические технологические ограничения, желательно использовать полумягкую обивку рабочего си­денья. Материал обивки должен быть нескользящим, влаго-отталкивающим, неэлектризующимся, воздухопроницаемым.

В оптимальном варианте конструкции рабочего сиденья долж­ны регулироваться высота поверхности сиденья, угол наклона спинки, расстояние от спинки до переднего края сиденья. При: необходимости должны регулироваться также следующие пара­метры: высота спинки, высота подлокотников, высота подголов­ников. Диапазон регулировки параметров устанавливается в пре­делах 5% для женщин и 95% для мужчин.

Существует определенная зависимость в высотных размерах рабочего сиденья и рабочей поверхности. Высота рабочей поверх­ности (для работы сидя) не имеет прямой связи с ростом рабо­тающего, а связана непосредственно с высотой сиденья. Кроме того, расстояние между рабочей поверхностью и плоскостью си­денья также не связано с ростом человека и мало варьирует: 280— 300 мм — при наклонном корпусе, 350 мм—при выпрямленном. Для кратковременного пользования (5—10 мин) рекоменду­ется использовать жесткие стулья и различного типа табуреты. Жесткие стулья рекомендуются с плоским горизонтальным си­деньем и профилированной спинкой. Табуреты различаются по форме сидений (круглые, квадратные), по высоте (высокие, сред­ние, низкие), по количеству опор (четыре, три опоры). Кроме того, могут быть использованы сиденья-опоры, представляющие собой высокие табуреты с уменьшенной горизонтальной поверхностью. Они используются в тех случаях, когда работающий не имеет воз­можности присесть «а короткое время, но может опереться на вы­сокое сиденье-опору, снизив тем самым напряжение мышц [3].Кресло человека-оператора стационарных и подвижных объек­тов должно включать следующие основные элементы: сиденье, спинку и подлокотники. Регулироваться должны высота поверх­ности сиденья и угол наклона спинки, а при необходимости — высота спинки и подлокотников, угол наклона подлокотников, вы­сота подголовника и подставки для ног, угол наклона подставки для ног. При этом должна обеспечиваться надежная фиксация элементов кресла в заданном положении. Подвижность кресла относительно пола или другой поверхности, на которой оно уста­новлено, может не ограничиваться. Однако в тех случаях, когда это необходимо, кресло должно быть фиксировано. Конструкция кресла должна способствовать ослаблению вибрационных и удар­ных воздействий. Конструкционные и отделочные материалы крес­ла должны быть прочными, огнестойкими, нетоксичными, обеспе­чивающими в необходимых случаях возможность эксплуатации в различных климатических условиях. Покрытия сиденья, спинки, подлокотников и подголовника должны изготовляться из умягчен­ного, влагоотталкивающего, неэлектризующегося, воздухопрони­цаемого материала.

 

 

ЛИТЕРАТУРА

 

1. 3 6 их о рек и 3. Организация рабочего места.— В кн.: Эргономика. Проб­лема приспособления условий труда к человеку. Пер. с польск. М., «Мир», 1971.

2. Зинченко В. П., Мунипов В. М., Смолян Г. Л. Эргономические основы организации труда. М., «Экономика», 1974.

3. Межотраслевые требования и нормативные материалы по научной органи­зации труда, которые должны учитываться при проектировании новых и реконструкции действующих предприятий, разработке технологических про­цессов и оборудования, т. 1. М., изд. НИИ труда Госкомтруда СССР, 19781

4. Научная организация труда в промышленности. Под общей ред. С. С. Но­вожилова. М., «Экономика», 1978.

5. Burandt U. Ergonomie fur Design und Entwickiung. Koln, Verlag О. Schmidt, 1978.

 

Оптимизация средств и систем отображения информации

 

 

§1. Деятельность оператора с информационными моделями

 

Развитие промышленности XX столетия все в большей и большей степени характеризуется механизацией и автоматизацией произ­водственных процессов. В ряде случаев это приводит к тому, что во многих видах деятельности не так легко конкретно указать и определить предмет труда и его результат. Дело в том, что сред­ства трудовой деятельности начинают занимать в сознании рабо­тающего место ее предмета, а сам предмет как бы «дематериали­зуется». Этот процесс дематериализации происходил постепенно. Существовало и существует большое число ситуаций, когда тре­буемая точность непосредственного наблюдения и оценки превос­ходит разрешающую способность органов чувств человека. Для повышения точности непосредственного наблюдения стали исполь­зовать различные датчики, информация от которых поступает в аналоговой или цифровой форме. Эта информация частично дуб­лирует непосредственное восприятие предмета труда или рабочего процесса. Приборная информация предъявляется в более удобной для восприятия форме. Использование таких двойных источников информации — это начало «раздвоения» предмета трудовой дея­тельности. Человек начинает иметь дело не только, а в некото­рых случаях и не столько с непосредственно наблюдаемыми, сколько с инструментально измеренными свойствами предмета тру­да. Такие ситуации типичны для многих транспортных профессий, для профессий металлургов, инструментальщиков и др. По мере того как человек все больше удалялся от предмета труда в силу невозможности или опасности его непосредственного наблюдения, все шире стали использовать разнообразные средства дистанцион­ного, контроля и управления, специальные средства отображения информации. Последние предназначены для предъявления челове­ку данных, характеризующих объекты управления или его пара­метры, ход технологического процесса, наличие энергетических ресурсов, состояние средств автоматизации, каналов связи и пр. Эти данные предъявляются человеку в количественной, качественной, в том числе и картинной форме.

Внедрение систем дистанционного контроля и управления привело к тому, что средства отображения информации стали использовать в качестве единственного источника информации об управляемом объекте, рабочем процессе и о состоянии самой си­стемы дистанционного управления или системы «человек — маши­на». Операторы таких систем действуют не с реальными объекта­ми, а с их заместителями или имитирующими их образами, т. е. с информационными моделями реальных объектов. Последние, бу­дучи средствами трудовой деятельности операторов, нередко ста­новятся и ее предметом.

Информационная модель есть организованная в соответствии с определенной системой правил совокупность информации о со­стоянии и функционировании объекта управления и внешней сре­ды. Она является для оператора своеобразным имитатором, отра­жающим все существенно важные для управления свойства реаль­ных объектов, т. е. тем источником информации, на основе кото­рого он формирует образ реальной обстановки, производит анализ и оценку сложившейся ситуации, планирует управляющие воздействия, принимает решения, обеспечивающие правильную ра­боту системы и выполнение возложенных на нее задач, а также наблюдает и оценивает результаты их реализации.

В философско-методологической литературе под моделью по­нимается функциональный гомоморфный перенос (отображение) части внешнего мира на систему понятий (изображений, визуали­зированных картин, символов, знаков и т. п.). Это отображение не является взаимно-однозначным, т. е. изоморфным, однако оно сохраняет связи, которые существуют между элементами внешнего мира. Последнее свойство позволяет модели быть не только описа­тельной, но и предсказательной. В соответствии с таким опреде­лением существенными компонентами модели являются: 1. Поня­тия (термины, знаки, символы). 2. Постулаты (аксиомы или зако­ны). 3. Правила трансформации (правила вычисления). 4. Прави­ла соответствия, отображения, которые позволяют сравнивать результаты вычислений с экспериментальными или практическими результатами. Приведенные четыре общих положения могут ха­рактеризовать модели-теории, а также очень простые модели. Распространены также и операционные определения модели. Си­стема является моделью, если она способна отвечать на вопросы о внешнем мире. Важным достоинством операционного определе­ния является то, что оно включает в себя не только модели-теории, но и кибернетические системы, реализованные с помощью ЭВМ. В соответствии с общепринятым положением о том, что слиш­ком абстрактная модель бесплодна, а слишком детальная вводит в заблуждение, объем информации, включенной в модель, и пра­вила ее организации должны соответствовать задачам и способам

управления. Физически информационная модель реализуется с по­мощью разнообразных средств отображения информации.

Наиболее существенной особенностью деятельности человека с информационной моделью является необходимость соотнесения сведений, получаемых посредством приборов, экранов, мнемосхем, табло и т. п., как между собой, так и с реальными управляемыми объектами. На процедурах соотнесения этих сведений строится вся деятельность оператора. Отсюда понятно, что построение адекватной информационной модели является одной из важней­ших задач конструирования системы управления в целом.

В работе по созданию информационных моделей, предшествую­щей выбору технических средств ее реализации, т. е. средств ото­бражения информации, необходимо руководствоваться следующи­ми эргономическими требованиями:

— по содержанию: информационные модели должны адекватно отображать объекты управления, рабочие процессы, окружаю­щую среду и состояние самой системы управления;

— по количеству информации: информационные модели должны обеспечивать оптимальный информационный баланс и не при­водить к таким нежелательным явлениям, как дефицит или излишек информации;

— по форме и композиции: информационные модели должны со­ответствовать задачам трудового процесса и возможностям человека по приему, анализу, оценке информации и осущест­влению управляющих воздействий.

Всесторонний учет этих требований в процессе проектирования обеспечивает необходимую оперативность и точность трудовой деятельности человека и, в частности, эффективное выполнение функций системой «человек — машина».

Информационные модели современных СЧМ в большинстве -случаев адекватно отражают объекты управления и состояние системы управления. Тем не менее работа оператора с ними часто не удовлетворяет требованиям оперативности и точности..

Опыт показывает, что операторы часто сталкиваются с трудно­стями, которые являются результатом того, что конструктор исхо­дит из неправильных или неполных представлений о возможно­стях человека по приему и переработке информации. С этим свя­заны такие просчеты, как неудачный выбор системы кодирования, предъявление слишком больших объемов информации или слиш­ком быстрая ее смена, не говоря уже об игнорировании элемен­тарных психофизиологических требований. Главная причина этого в том, что в основу информационной модели нередко кладется система взаимосвязей реального объекта, не учитывающая специ­фических особенностей психологической структуры работы чело­века с этим объектом.

Предметное содержание деятельности оператора весьма много­образно. Это разнообразие отражено в классификации автомати­зированных систем управления (АСУ). К нему следует лишь добавить саму систему управления и ее элементы, которые высту­пают в качестве особого предметного содержания деятельности операторов, занятых функциональным контролем и обслуживанием средств автоматизации. В описание предметного содержания объектов управления обязательно должны входить пространствен­но-временные и динамические параметры их существования, функ­ционирования и взаимодействия.

Кстати, для того чтобы проиллюстрировать многообразие пред­метного содержания деятельности оператора, следует напомнить, что в качестве такового выступает и его собственное функциональ­ное состояние. Это типично для проводимых космонавтами медико-биологических, психологических и эргономических исследований. Анализ предметного содержания деятельности является исход­ным и необходимым условием решения любых эргономических за­дач. Детальная характеристика предметного содержания деятель­ности особенно необходима на стадиях разработки информацион­ных моделей и для обучения операторов.

Характеристика психологического содержания деятельности оператора была дана в работах Д. Ю. Панова и В. П. Зинченко [8, 9], после чего многократно воспроизводилась, детализирова­лась, уточнялась применительно к различным видам операторской деятельности. Здесь нужно подчеркнуть, что эргономика и инже­нерная психология изучают и проектируют именно деятельность с информационными (и исполнительными) моделями. В инженер­ной психологии нередко употребляется термин «взаимодействие человека со средствами автоматизации». Этот термин, однако, не позволяет зафиксировать специфику человеческой деятельности. Средства автоматизации, как известно, могут взаимодействовать друг с другом и без помощи человека. Об этом можно было бы и не говорить, если бы термины «информационное взаимодействие», «информационный обмен» и т. п. не задавали неверную методоло­гическую ориентацию эргономическим и инженерно-психологиче­ским исследованиям.

Понятие деятельности применимо и в тех случаях, когда речь идет о диалоге человека и машины. Во всяком диалоге имеется ведущий партнер. В диалоговых взаимоотношениях человека и машины в автоматизированных системах управления меняется лишь то, что оператор имеет значительно большую свободу опе­рирования с информационной моделью по сравнению с первыми-поколениями АСУ. Видимо, в перспективе операторы в известных пределах сами будут определять содержание и форму информа­ционных моделей, обращаясь к информационному обеспечению АСУ.

Узловая проблематика психологического анализа деятельности оператора связана с содержанием, формой постоянных и опера­тивных образно-концептуальных моделей (ОКМ) реальной и прогнозируемой обстановки, самой системы управления, потен­циальных и актуальных проблемных ситуаций. ОКМ также включает в себя систему оценок и ценностей, оперативные способности, общее представление о времени и пространстве и определенный способ взаимодействия индивида с внешним миром. Проблема внутренних моделей окружения возникла в философии и общей психологии до инженерно-психологических исследований. Эти мо­дели назывались также собственными, концептуальными. (В ка­честве курьеза можно упомянуть также об употреблении равно­значных по смыслу, но неадекватных по форме терминов «мозго­вая» и «психическая модель».)

В контексте инженерно-психологических исследований пробле­ма внутренних и концептуальных моделей была выдвинута в Англии в 1943 г., но затем она долго не могла получить соот­ветствующей разработки. Интерес к этой проблематике возродил­ся в последние годы в связи с приходом на смену необихевиоризму и информационному подходу когнитивной психологии. В нашей литературе проблеме формирования и функционирования ОКМ посвящено большое число экспериментальных психологических исследований. Это связано с основной ориентацией советской эрго­номики и инженерной психологии на формирование у оператора системы разумных действий, а не цепей реакции. Хотя к деятель­ности человека в АСУ предъявляются требования в отношении скорости, своевременности, оперативности, это не означает, что у человека надо вырабатывать реактивные, импульсивные формы поведения. Подчеркивание значения ОКМ в деятельности опера­тора—это подчеркивание разумного, сознательного характера его деятельности.

Сложность рационального определения (и проектирования) дея­тельности оператора состоит в том, что его включают в систему управления для выполнения таких функций, применительно к ко­торым часто невозможно выработать четкие и однозначные инструкции и правила. При этом оператору поручаются выполне­ние или контроль наиболее важных и ответственных функций в системе. От оператора требуются разумные действия в непред­виденных обстоятельствах, зачастую в условиях недостаточной, а порой и недостоверной информации. Работа оператора, как и системы управления в целом, протекает в реальном масштабе вре­мени, что налагает особые требования к ее скорости и точности. Проблемы оптимизации и проектирования деятельности опера­торов с информационными моделями, разработка требований к ин­формационным моделям, пути формирования постоянных и опе­ративных образно-концептуальных моделей ситуации уже длитель­ное время находятся в центре внимания специалистов области эргономики, инженерной психологии, техники отображения инфор­мации. В то же время конкретное содержание этой проблематики претерпело за последние пятнадцать лет существенные изменения. Отступили на второй план исследования скорости перцептивных процессов, в частности информационного поиска. Значительное усовершенствование качества предъявления информации привело к уменьшению числа исследований, посвященных однозначности восприятия знаковой и буквенно-цифровой информации. Достигну­та значительно большая ясность в понимании оперативно-техниче­ской стороны перцептивных и опознавательных процессов. Однако все это не уменьшило актуальности исследования путей построе­ния информационных и формирования концептуальных моделей. Корни этой проблематики касаются самого существа деятельности операторов автоматизированных систем управления. В этом типе деятельности выступает, может быть, значительно более рельеф­но, чем в других, известная диспропорция между бедностью ото­бражения и богатством, сложностью и многослойностью отобра­женной реальности, которую человек должен реконструировать, анализировать и применять в соответствии с принятым решением. И несмотря на быстрое развитие техники отображения, эта дис­пропорция сохраняется (если не увеличивается по мере роста мас­штабов и сложности АСУ). Сохранение этой диспропорции приво­дит к изменению проблематики изучения перцептивных и мысли­тельных процессов.

Поскольку оператор все больше имеет дело с недостаточно чет­ко определенным пространством возможных задач, нередко бывает так, что он должен извлекать, вычерпывать из информационной модели и соответственно реконструировать самое различное пред­метное содержание, различные слои реальности. Эти слои могут быть внешними, характеризующими, например, пространственное расположение объектов или их единичные свойства; они могут характеризовать общие функциональные свойства групп объектов или функциональные (а не только пространственно-временные) отношения между различными объектами; наконец, возможны ситуации, требующие оперирования не с самими объектами, а с системами более или менее взаимосвязанных категориальных свойств и качеств этих объектов.

Учет указанных обстоятельств, в которых протекает реальная деятельность оператора, требует более интенсивного, чем прежде, изучения мотивационных, целевых, в широком смысле, личностных аспектов перцептивной и мыслительной деятельности.

Немалый научный и практический интерес представляют по­следовательность и возможная глубина проникновения оператора в ситуацию, в ее невидимые непосредственно пласты, в ее смысл и значение. Здесь важна и такая характеристика, как время про­никновения в эти пласты, время построения образно-концептуаль­ной модели, которая по необходимости является частичной, в известном смысле односторонней. Важным является и время дополнения модели или время ее смены. Но, пожалуй, наиболее существенным является определение направленности на то или иное предметное содержание. При этом последняя определяется как задачами субъекта, так и самим предметным содержанием и, разумеется, способами его извлечения и трансформации в значе­ние. Сочетание, этих обстоятельств приводит к эволюции (или к смене) ОКМ, т. е. к эволюции когнитивных продуктов деятель­ности, к смене образа ситуации, к полаганию новых целей. Есте­ственно, что ведущим в этом сочетании является реальный объект, его реальное предметное содержание, детерминирующее действие субъекта. Вместе с тем нельзя недооценивать и возможного (а может быть и обязательного) эффекта «вчитывания» в объект априорного опыта и знаний субъекта. Последнее требует особен­но внимательного отношения к индивидуальным различиям между людьми, к возможному предпочтению ими тех или иных слоев реальности.

Сказанное относительно предметного содержания деятельности оператора подтверждает тезис о его «дематериализации». Этот тезис следует понимать в том смысле, что у оператора в каждый данный момент его деятельности нет априорного представления о ее конкретном предметном содержании. Он должен извлекать его из избыточной информационной модели, строить образ этого предметного содержания и в зависимости от этого образа ставить и достигать конкретные цели.

Именно поэтому деятельность оператора нередко называют творческой и именно поэтому так сложна оценка эффективности деятельности операторов СЧМ, равно как и решение насущных задач оптимизации и проектирования деятельности операторов.

Опыт разработки и эксплуатации информационных моделей, а также специальный анализ деятельности операторов с ними по­зволяют сформулировать ряд важнейших характеристик инфор­мационных моделей.







Дата добавления: 2015-08-30; просмотров: 332. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия