Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оценка параметра называется несмещённой, если её математическое ожидание М( *) равно неизвестному оцениваемому параметру .





2. Оценка * называется состоятельный, если она сходится по вероятности к оцениваемому параметру

3. Статистическая оценка называется эффективной, если при заданном “n” она имеет наименьшую дисперсию.

Выборочная средняя - - является несмещённой и состоятельной оценкой математического ожидания.

Несмещённая оценка дисперсии – исправленная выборочная дисперсия - .

Метод моментов для точечной оценки параметров распределения.

Предполагаем, что известен вид функции распределения исследуемой случайной величины (например, равномерное дискретное, или непрерывное экспоненциальное или нормальное и т.д.).

Для определения неизвестных параметров этого известного распределения составляем уравнения, в левой части которых – теоретические, а в правых – эмпирические моменты одинаковых порядков. Число таких уравнений равно числу неизвестных параметров распределения (для равномерного -2, для показательного – 1, для нормального – 2 и т. д.)

; DB для равномерного;

a; DB для нормального; для экспоненциалього.

 

Метод наибольшего правдоподобия для точечной оценки параметров распределения.

Составляем функцию правдоподобия дискретной случайной величины, аргументы которой – полученные выборочным методом значения случайной величины и оцениваемый параметр распределения. Исследуем эту функцию, или, если это удобнее, логарифм функции правдоподобия на экстремум и находим значение оценки, при которой функция достигает максимума. Эта оценка – оценка наибольшего правдоподобия.

Доверительный интервал – случайный интервал, в пределах которого с вероятностью находится неизвестный оцениваемый параметр. - доверительная вероятность, или надёжность оценки.

1.Доверительный интервал для оценки мат ожидания СВ .

< < + , где

2.Доверительный интервал для оценки среднеквадратического отклонения СВ .

, где s –несмещённое выборочное среднеквадратичное отклонение, q – табличная функция, зависящая от объёма выборки n и надёжности оценки .

 

 







Дата добавления: 2015-08-30; просмотров: 403. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия