Ионизирующее излучение
Ионизирующим излучением называется излучение, взаимодействие которого с веществом приводит к образованию в этом веществе ионов разного знака. Ионизирующее излучение состоит из заряженных и незаряженных частиц, к которым относятся также фотоны. Энергию частиц ионизирующего излучения измеряют во внесистемных единицах— электрон-вольтах, эВ. 1эВ = 1,6 10-19 Дж. Различают корпускулярное и фотонное ионизирующее излучение. Корпускулярное ионизирующее излучение — поток элементарных частиц с массой покоя, отличной от нуля, образующихся при радиоактивном распаде, ядерных превращениях, либо генерируемых на ускорителях. К нему относятся: α- и β-частицы, нейтроны (n), протоны (р) и др. α-излучение — это поток частиц, являющихся ядрами атома гелия и обладающих двумя единицами заряда. Энергия α-частиц, испускаемых различными радионуклидами, лежит в пределах 2-8 МэВ. При этом все ядра данного радионуклида испускают α-частицы, обладающие одной и той же энергией. β-излучение — это поток электронов или позитронов. При распаде ядер β-активного радионуклида, в отличие от α-распада, различные ядра данного радионуклида испускают β-частицы различной энергии, поэтому энергетический спектр β-частиц непрерывен. Средняя энергия β-спектра составляет примерно 0,3 Етах. Максимальная энергия β-частиц у известных в настоящее время радионуклидов может достигать 3,0-3,5 МэВ. Нейтроны (нейтронное излучение) — нейтральные элементарные частицы. Поскольку нейтроны не имеют электрического заряда, при прохождении через вещество они взаимодействуют только с ядрами атомов. В результате этих процессов образуются либо заряженные частицы (ядра отдачи, протоны, нейтроны), либо g-излучение, вызывающие ионизацию. По характеру взаимодействия со средой, зависящему от уровня энергии нейтронов, они условно разделены на 4 группы: 1) тепловые нейтроны 0,0-0,5 кэВ; 2) промежуточные нейтроны 0,5-200 кэВ; 3) быстрые нейтроны 200 Кэв — 20 Мэв; 4) релятивистские нейтроны свыше 20 МэВ. Фотонное излучение — поток электромагнитных колебаний, которые распространяются в вакууме с постоянной скоростью 300000 км/с. К нему относятся g-излучение, характеристическое, тормозное и рентгеновское Обладая одной и той же природой, эти виды электромагнитных излучений различаются условиями образования, а также свойствами: длиной волны и энергией. Так, g-излучение испускается при ядерных превращениях или при аннигиляции частиц. Характеристическое излучение — фотонное излучение с дискретным спектром, испускаемое при изменении энергетического состояния атома, обусловленного перестройкой внутренних электронных оболочек. Тормозное излучение — связано с изменением кинетической энергии заряженных частиц, имеет непрерывный спектр и возникает в среде, окружающей источник β-излучения, в рентгеновских трубках, в ускорителях электронов и т. п. Рентгеновское излучение — совокупность тормозного и характеристического излучений, диапазон энергии фотонов которых составляет 1 кэВ – 1 МэВ. Излучения характеризуются по их ионизирующей и проникающей способности. Ионизирующая способность излучения определяется удельной ионизацией, т. е. числом пар ионов, создаваемых частицей в единице объема массы среды или на единице длины пути. Излучения различных видов обладают различной ионизирующей способностью. Проникающая способность излучений определяется величиной пробега. Пробегом называется путь, пройденный частицей в веществе до ее полной остановки, обусловленной тем или иным видом взаимодействия. α-частицы обладают наибольшей ионизирующей способностью и наименьшей проникающей способностью. Их удельная ионизация изменяется от 25 до 60 тыс. пар ионов на 1 см пути в воздухе. Длина пробега этих частиц в воздухе составляет несколько сантиметров, а в мягкой биологической ткани — несколько десятков микрон. β-излучение имеет существенно меньшую ионизирующую способность и большую проникающую способность. Средняя величина удельной ионизации в воздухе составляет около 100 пар ионов на 1 см пути, а максимальный пробег достигает нескольких метров при больших энергиях. Наименьшей ионизирующей способностью и наибольшей проникающей способностью обладают фотонные излучения. Во всех процессах взаимодействия электромагнитного излучения со средой часть энергии преобразуется в кинетическую энергию вторичных электронов, которые, проходя через вещество, производят ионизацию. Прохождение фотонного излучения через вещество вообще не может быть охарактеризовано понятием пробега. Ослабление потока электромагнитного излучения в веществе подчиняется экспоненциальному закону и характеризуется коэффициентом ослабления р., который зависит от энергии излучения и свойств вещества. Но какой бы ни была толщина слоя вещества, нельзя полностью поглотить поток фотонного излучения, а можно только ослабить его интенсивность в любое число раз. В этом существенное отличие характера ослабления фотонного излучения от ослабления заряженных частиц, для которых существует минимальная толщина слоя вещества-поглотителя (пробег), где происходит полное поглощение потока заряженных частиц. Биологическое действие ионизирующих излучений. Под воздействием ионизирующего излучения на организм человека в тканях могут происходить сложные физические и биологические процессы. В результате ионизации живой ткани происходит разрыв молекулярных связей и изменение химической структуры различных соединений, что в свою очередь приводит к гибели клеток. Еще более существенную роль в формировании биологических последствий играют продукты радиолиза воды, которая составляет 60-70% массы биологической ткани. Под действием ионизирующего излучения на воду образуются свободные радикалы Н·и ОН·, а в присутствии кислорода также свободный радикал гидропероксида (НО·2) и пероксида водорода (Н2O2), являющиеся сильными окислителями. Продукты радиолиза вступают в химические реакции с молекулами тканей, образуя соединения, не свойственные здоровому организму. Это приводит к нарушению отдельных функций или систем, а также жизнедеятельности организма в целом. Интенсивность химических реакций, индуцированных свободными радикалами, повышается, и в них вовлекаются многие сотни и тысячи молекул, не затронутых облучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты, то есть производимый излучением эффект обусловлен не столько количеством поглощенной энергии в облучаемом объекте, сколько той формой, в которой эта энергия передается. Никакой другой вид энергии (тепловой, электрической и др.), поглощенной биологическим объектом в том же количестве, не приводит к таким изменениям, какие вызывают ионизирующие излучения. Ионизирующая радиация при воздействии на организм человека может вызвать два вида эффектов, которые клинической медициной относятся к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, лучевое бесплодие, аномалии в развитии плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухоли, лейкозы, наследственные болезни). Нарушения биологических процессов могут быть либо обратимыми, когда нормальная работа клеток облученной ткани полностью восстанавливается, либо необратимыми, ведущими к поражению отдельных органов или всего организма и возникновению лучевой болезни. Различают две формы лучевой болезни — острую и хроническую. Острая форма возникает в результате облучения большими дозами в короткий промежуток времени. При дозах порядка тысяч рад поражение организма может быть мгновенным («смерть под лучом»). Острая лучевая болезнь может возникнуть и при попадании внутрь организма больших количеств радионуклидов. Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе выше 0,5 Гр. При дозе 0,25...0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5...1,5 Гр возникает чувство усталости, менее чем у 10 % облученных может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5...2,0 Гр наблюдается легкая форма острой лучевой болезни, которая проявляется продолжительной лимфопенией (снижение числа лимфоцитов — иммунокомпетентных клеток), в 30...50 % случаев — рвота в первые сутки после облучения. Смертельные исходы не регистрируются. Лучевая болезнь средней тяжести возникает при дозе 2,5...4,0 Гр. Почти у всех облученных в первые сутки наблюдаются тошнота, рвота, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20 % случаев возможен смертельный исход, смерть наступает через 2...6 недель после облучения. При дозе 4,0...6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50 % случаев к смерти в течение первого месяца. При дозах, превышающих 6,0 Гр, развивается крайне тяжелая форма лучевой болезни, которая почти в 100 % случаев заканчивается смертью вследствие кровоизлияния или инфекционных заболеваний. Приведенные данные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплексном лечении позволяют исключить летальный исход при дозах около 10 Гр. Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической лучевой болезни являются изменения в крови, ряд симптомов со стороны нервной системы, локальные поражения кожи, поражения хрусталика, пневмосклероз (при ингаляции плутония-239), снижение иммунореактивности организма. Степень воздействия радиации зависит от того, является облучение внешним или внутренним (при попадании радиоактивного изотопа внутрь организма). Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Кальций, радий, стронций и другие накапливаются в костях, изотопы йода вызывают повреждение щитовидной железы, редкоземельные элементы — преимущественно опухоли печени. Равномерно распределяются изотопы цезия, рубидия, вызывая угнетение кроветворения, атрофию семенников, опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие изотопы полония и плутония. Способность вызывать отдаленные последствия — лейкозы, злокачественные новообразования, раннее старение — одно из коварных свойств ионизирующего излучения. Для решения вопросов радиационной безопасности в первую очередь представляют интерес эффекты, наблюдаемые при «малых дозах» — порядка нескольких сантизивертов в час и ниже, которые реально встречаются при практическом использовании атомной энергии. Весьма важным здесь является то, что, согласно современным представлениям, выход неблагоприятных эффектов в диапазоне «малых доз», встречающихся в обычных условиях, мало зависит от мощности дозы. Это означает, что эффект определяется прежде всего суммарной накопленной дозой вне зависимости от того, получена она за 1 день, за 1 с или за 50 лет. Таким образом, оценивая эффекты хронического облучения, следует иметь в виду, что эти эффекты накапливаются в организме в течение длительного времени. Дозиметрические величины и единицы их измерения. Действия ионизирующего излучения на вещество проявляется в ионизации и возбуждении атомов и молекул, входящих в состав вещества. Количественный мерой этого воздействия служит поглощенная доза Дп — средняя энергия, переданная излучением единице массы вещества. Единица поглощенной дозы — грей (Гр). 1 Гр = 1 Дж/кг. На практике применяется также внесистемная единица — 1 рад = 100 эрг/г = 1 10-2 Дж/кг = 0,01 Гр. Поглощенная доза излучения зависит от свойств излучения и поглощающей среды. Для заряженных частиц (α, β, протонов) небольших энергий, быстрых нейтронов и некоторых других излучений, когда основными процессами их взаимодействия с веществом являются непосредственная ионизация и возбуждение, поглощенная доза служит однозначной характеристикой ионизирующего излучения по его воздействию на среду. Это связано с тем, что между параметрами, характеризующими данные виды излучения (поток, плотность потока и др.) и параметром, характеризующим ионизационную способность излучения в среде — поглощенной дозой, можно установить адекватные прямые зависимости. Для рентгеновского и g-излучений таких зависимостей не наблюдается, так как эти виды излучений косвенно ионизирующие. Следовательно, поглощенная доза не может служить характеристикой этих излучений по их воздействию на среду. До последнего времени в качестве характеристики рентгеновского и g-излучений по эффекту ионизации используют так называемую экспозиционную дозу. Экспозиционная доза выражает энергию фотонного излучения, преобразованную в кинетическую энергию вторичных электронов, производящих ионизацию в единице массы атмосферного воздуха. За единицу экспозиционной дозы рентгеновского и g-излучений принимают кулон на килограмм (Кл/кг). Это такая доза рентгеновского или g-излучения, при воздействии которой на 1 кг сухого атмосферного воздуха при нормальных условиях образуются ионы, несущие 1 Кл электричества каждого знака. На практике до сих пор широко используется внесистемная единица экспозиционной дозы — рентген. 1 рентген (Р) — экспозиционная доза рентгеновского и g-излучений, при которой в 0,001293 г (1 см3 воздуха при нормальных условиях) образуются ионы, несущие заряд в одну электростатическую единицу количества электричества каждого знака или 1 Р=2,58 10-4 Кл/кг. При экспозиционной дозе в 1 Р будет образовано 2,08 109 пар ионов в 0,001293 г атмосферного воздуха. Исследования биологических эффектов, вызываемых различными ионизирующими излучениями, показали, что повреждение тканей связано не только с количеством поглощенной энергии, но и с ее пространственным распределением, характеризуемым линейной плотностью ионизации. Чем выше линейная плотность ионизации, или, иначе, линейная передача энергии частиц в среде на единицу длины пути (ЛПЭ), тем больше степень биологического повреждения. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Доза эквивалентная HT,R — поглощенная доза в органе или ткани DT,R, умноженная на соответствующий взвешивающий коэффициент для данного излучения WR:
Ht,r = WRDT,R Единицей измерения эквивалентной дозы является Дж ;кг-1, имеющий специальное наименование зиверт (Зв). Значения WR для фотонов, электронов и мюонов любых энергий составляет 1, для α-частиц, осколков деления, тяжелых ядер — 20. Взвешивающие коэффициенты для отдельных видов излучения при расчете эквивалентной дозы: · Фотоны любых энергий…………………………………………………….1 · Электроны и мюоны (менее 10 кэВ)……………………………………….1 · Нейтроны с энергией менее 10 кэВ………………………………………...5 от 10 кэВ до 100 кэВ ……....………………………………………………10 от 100 кэВ до 2 МэВ………………………………………………………..20 от 2 МэВ до 20 МэВ………………………………………………………..10 более 20 МэВ…………………………………………………………………5 · Протоны, кроме протонов отдачи, энергия более 2 МэВ………………………………….………………5 · Альфа-частицы, осколки деления, тяжелые ядра………………………………………….20
Доза эффективная — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности Она представляет сумму произведений эквивалентной дозы в органе НτТ на соответствующий взвешивающий коэффициент для данного органа или ткани WT:
где НτТ — эквивалентная доза в ткани Т за время τ;. Единица измерения эффективной дозы — Дж × кг-1, называемая зивертом (Зв). Значения WT для отдельных видов ткани и органов приведены ниже:
Вид ткани, орган W1 Гонады................................................................................................................0,2 Костный мозг, (красный), легкие, желудок………………………………0,12 Печень, грудная железа, щитовидная железа. …………………………...0,05 Кожа……………………………………………………………………………0,01 Поглощенная, экспозиционная и эквивалентная дозы, отнесенные к единице времени, носят название мощности соответствующих доз. Самопроизвольный (спонтанный) распад радиоактивных ядер следует закону: N = N0 ехр(-λt), где N0 — число ядер в данном объеме вещества в момент времени t = 0; N — число ядер в том же объеме к моменту времени t; λ — постоянная распада. Постоянная λ имеет смысл вероятности распада ядра за 1 с; она равна доле ядер, распадающихся за 1 с. Постоянная распада не зависит от общего числа ядер и имеет вполне определенное значение для каждого радиоактивного нуклида. Приведенное выше уравнение показывает, что с течением времени число ядер радиоактивного вещества уменьшается по экспоненциальному закону. В связи с тем, что период полураспада значительного числа радиоактивных изотопов измеряется часами и сутками (так называемые короткоживущие изотопы), его необходимо знать для оценки радиационной опасности во времени в случае аварийного выброса в окружающую среду радиоактивного вещества, выбора метода дезактивации, а также при переработке радиоактивных отходов и последующем их захоронении. Описанные виды доз относятся к отдельному человеку, то есть являются индивидуальными. Просуммировав индивидуальные эффективные эквивалентные дозы, полученные группой людей, мы придем к коллективной эффективной эквивалентной дозе, которая измеряется в человеко-зивертах (чел-Зв). Следует ввести еще одно определение. Многие радионуклиды распадаются очень медленно и останутся в отдаленном будущем. Коллективную эффективную эквивалентную дозу, которую получат поколения людей от какого-либо радиоактивного источника за все время его существования, называют ожидаемой (полной) коллективной эффективной эквивалентной дозой. Активность препарата — это мера количества радиоактивного вещества. Определяется активность числом распадающихся атомов в единицу времени, то есть скоростью распада ядер радионуклида. Единицей измерения активности является одно ядерное превращение в секунду. В системе единиц СИ она получила название беккерель (Бк). За внесистемную единицу активности принята кюри (Ки) — активность такого числа радионуклида, в котором происходит 3,7×1010 актов распада в секунду. На практике широко пользуются производными Ки: милликюри — 1 мКи = 1 ×10-3 Ки; микрокюри — 1 мкКи = 1 ×10-6 Ки. Измерение ионизирующих излучений. Необходимо помнить, что не существует универсальных методов и приборов, применимых для любых условий. Каждый метод и прибор имеют свою область применения. Неучет этих замечаний может привести к грубым ошибкам. В радиационной безопасности используют радиометры, дозиметры и спектрометры. Радиометры — это приборы, предназначенные для определения количества радиоактивных веществ (радионуклидов) или потока излучения. Например, газоразрядные счетчики (Гейгера-Мюллера). Дозиметры — это приборы для измерения мощности экспозиционной или поглощенной дозы. Спектрометры служат для регистрации и анализа энергетического спектра и идентификации на этой основе излучающих радионуклидов. Нормирование. Вопросы радиационной безопасности регламентируется Федеральным законом «О радиационной безопасности населения», нормами радиационной безопасности (НРБ—99) и другими правилами и положениями. В законе «О радиационной безопасности населения» говорится: «Радиационная безопасность населения — состояние защищенности настоящего и будущего поколений людей от вредного для их здоровья воздействия ионизирующего излучения» (статья 1). «Граждане Российской Федерации, иностранные граждане и лица без гражданства, проживающие на территории Российской Федерации, имеют право на радиационную безопасность. Это право обеспечивается за счет проведения комплекса мероприятий по предотвращению радиационного воздействия на организм человека ионизирующего излучения выше установленных норм, правил и нормативов, выполнения гражданами и организациями, осуществляющими деятельность с использованием источников ионизирующего излучения, требований к обеспечению радиационной безопасности» (статья 22). Гигиеническая регламентация ионизирующего излученияосуществляется Нормами радиационной безопасности НРБ—99 (Санитарными правилами СП 2.6.1.758—99). Основные дозовые пределы облучения и допустимые уровни устанавливаются для следующих категорий облучаемых лиц: · персонал — лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б); · все население, включая лиц из персонала, вне сферы и условий их производственной деятельности. Для категорий облучаемых лиц устанавливают три класса нормативов: основные пределы доз (ПД), табл. 8, допустимые уровни, соответствующие основным пределам доз, и контрольные уровни. Таблица 8
|