Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изменение порядка интегрирования в двойном интеграле





Пример 16. Изменить порядок интегрирования в двойном интеграле .

Решение. Вычисление этого интеграла производится повторным интегрированием: сначала вычисляется интеграл , а затем поолучившаяся функция интегрируется по переменной х на отрезке [1;3].

 

Для изменения порядка интегрирования необходимо сначала начертить область интегрирования D, которая ограничена линиями х =1, х =3, y=-x, y= -x. Уравнения линий берутся в соответствии с пределами интегрирования. На рисунке область D – это трапеция ABFK. Координаты точек A,B,F,K находим, решая соответствующие системы уравнений. Таким образом получили A(1;1), B(3;3), F(3,-3), K(1;-1).

При изменении порядка интегрирования первое интегрирование теперь проводится по переменной y, а второе -–по переменной x. В этом случае при задании области D переменная y изменяется от –3 до 3, а переменная x от линии FKAB до линии FB. Если прямая FB задается одним уравнением х =3, то ломаная FKAB – тремя: х =1, y=-x, y= -x. Таким образом, область интегрирования D имеет смысл представить как объединение трех областей, каждая из которых задается своей системой неравенств:

FKE:

KACE:

ACB: .

Нашли, что исходный двойной интеграл после замены порядка интегрирования записывается в виде суммы трех двойных интегралов:

+ +

 

ЗАДАНИЯ КОНТРОЛЬНОЙ РАБОТЫ

 

Задание № 1. Найти неопределенные интегралы (результаты в случаях а), б) проверить дифференцированием)

 

1. а) б)
  в) г)
  д) е)
2. а) б)
  в) г)
  д) е)
3. а) б)
  в) г)
  д) е)
4. а) б)
  в) г)
  д) е)
5. а) б)
  в) г)
  д) е)
6. а) б)
  в) г)
  д) е)
7. а) б)
  в) г)
  д) е)
8. а) б)
  в) г)
  д) е)
9. а) б)
  в) г)
  д) е)
10. a) б)
  в) г)
  д) е)
11. . а) б)
  в) г)
  д) е)
12. а) б)
  в) г)
  д) е)
13. . а) б)
  в) г)
  д) е)
14. а) б)
  в) г)
  д) е)
15. а) б)
  в) г)
  д) е)
16. а) б)
  в) г)
  д) е)
17. а) б)
  в) г)
  д) е)
18. а) б)
  в) г)
  д) е)
19. а) б)
  в) г)
  д) е)
20. а) б)
  в) г)
  Д) е)
21. А) б)
  В) г)
  Е) д)
22. А) б)
  В) г)
  д) е)
23. а) б)
  в) г)
  д) е)
24. а) б)
  в) г)
  д) е)
25. а) б)
  в) г)
  д) е)
26. а) б)
  в) г)
  д) е)
  а) б)
  в) г)
  д) е)
28. а) б)
  в) г)
  д) е)
29. а) б)
  в) г)
  д) е)
30. а) б)
  в) г)
  д) е)
31. а) б)
  в) г)
  д) е)
32. а) б)
  в) г)
  д) е)
33. а) б)
  в) г)
  д) е)
34. а) б)
  в) г)
  д) е)
35. а) б)
  в) г)
  д) е)
36. а) б)
  в) г)
  д) е)
37. а) б)
  в) г)
  д) е)
38. а) б)
  в) г)
  д) е)
39. а) б)
  в) г)
  д) е)
40. а) б)
  в) г)
  д) е)

 

Задание № 2. Вычислить с помощью замены переменной определенный интеграл.

 

1. 2. 3.
4. 5. 6.
7. 8. 9.
10. 11. 12.
13. 14. 15.
16. 17. 18.
19. 20. 21.
22. 23. 24.
25. 26. 27.
28. 29. 30.
31. 32. 33.
34. 35. 36.
37. 38. 39.
40.    

 

Задание № 3. Вычислить несобственный интеграл или доказать его расходимость.

1. 2. 3. .
4. 5. 6.
7. 8. 9.
10 11. 12.
13. 14. 15.
16. 17. 18.
19. 20. 21.
22. 23. 24.
25. 26. 27.
28. 29. 30.
31. 32. 33.
34. 35. 36.
37. 38. 39.
40.    

 

Задание № 4. Вычислить площадь фигуры, ограниченной линиями с указанными ниже уравнениями. Сделать чертеж.

 

1. 2.
3. 4.
5. 6.
7. 8.
9. 10. y=x, y=2x, x=2
11. 11 12.
13. 14.
15. 16.
17. 18.

 

Задание 5.

 

1. Вычислить длину дуги кривой, заданной уравнением

2. Вычислить объем тела образованного вращением вокруг оси ОУ фигуры, ограниченной линиями

3. Вычислить длину дуги кривой

4. Вычислить объем тела, образованного вращением вокруг оси ОУ фигуры, ограниченной линиями

5. Вычислить объем тела, образованного вращением вокруг оси ОУ фигуры, ограниченной линиями

6. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

7. Вычислить длину дуги кривой , от x= -1 до х=1.

8. Вычислить объем тела, образованного вращением вокруг оси ОУ фигуры, ограниченной линиями

9. Найти длину кардиоиды

10. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

11. Вычислить длину дуги кривой от точки А(0,0) до точки В(4,8).

12. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

13. Вычислить длину дуги кривой , лежащей между ее точками пересечения с осью ОХ.

14. Вычислить длину дуги кривой ,
между точками пересечения с осями координат.

15. Вычислить объем тела, образованного вращением вокруг оси ОУ фигуры, ограниченной линиями .

16. Вычислить длину дуги кривой

17. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной графиками функций

18. Вычислить длину дуги кривой .

19. Вычислить длину дуги кривой , отсекаемой прямой х=1.

20. Найти длину дуги циклоиды

21. Вычислить длину дуги кривой от х=0 до х=2.

22. Вычислить длину дуги параболы

23. Вычислить длину дуги кривой от х=0 до х=8.

24. Вычислить длину дуги кривой

25. Вычислить длину дуги кривой

26. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной графиками функций

27. Вычислить длину дуги кривой , между точками пересечения с осями координат.

28. Вычислить длину дуги кривой , отсекаемой прямой х=4.

29. Вычислить длину дуги кривой от до

30. Вычислить длину дуги кривой от точки А(2,0) до точки В(6,8).

31. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

32. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

33. Вычислить длину дуги кривой

34. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

35. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

36. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

37. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

38. Вычислить объем тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями

39. Вычислить объем тела, образованного вращением вокруг оси ОУ фигуры, ограниченной линиями

40. Вычислить длину дуги кривой, заданной уравнениями

 

Задание 6. Изменить порядок интегрирования в двойных интегралах:

 

1. 2.
3. 4.
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
17. 18. `
19. 20.
21. 22.
23. 24.
25. 26.
27. 28.
29. 30.
31. 32.
33. 34.
35. 36.
37. 38.
39. 40.

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 

1. Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа для втузов.-М.: Наука, 1973. –720 с..

2. Пискунов Н.С. Дифференциальное и интегральное исчисление. -М.: Наука, 1972. - Т.1 -456 с.

3. Письменный Д. Конспект лекций по высшей математике. 1 часть. М.: Айрис-пресс, 2007.- с.193-257.

4. Попов А.Г.,Данко П.Е., Кожевникова Т.Я.. Высшая математика в упражнениях и задачах. ч.1,2. – М.: Высшая школа, 1999г.

 


 

 







Дата добавления: 2015-09-19; просмотров: 1086. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия