Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нелинейная регрессия.





Вопросы:

5. Регрессии, нелинейные по переменным.

6. Регрессии, нелинейные по параметрам.

7. Индекс корреляции и индекс детерминации.

8. Эластичность функции.

 

Многие экономические зависимости не являются линейными по своей сути и их моделирование линейными регрессиями не дает положительного результата. Так для описания зависимости спроса на некоторый товар от его цены наиболее целесообразно использовать логарифмическую модель. При анализе зависимостей издержек от объема выпуска наиболее обоснованной является полиномиальная модель. Широко используемая функция Кобба-Дугласа, является степенной функцией

У – объем выпуска.

К-затраты капитала.

L - затраты труда.

А, α, β – параметры.

В современной экономике применяются также достаточно часто обратные и экспоненциальные модели. Различают регрессии нелинейные по переменным и нелинейные по параметрам.

 

1.

К регрессиям, нелинейным по переменным относят полиномы различных степеней.:

(1)

, (2)

равносторонняя гипербола , (3)

функции вида (4)

Нелинейность по переменным устраняется путем замены переменной. Так в регрессии (1) сделаем замену х=х1, х22 и получим двухфакторную линейную регрессию.

В уравнении (3) замена переменной имеет вид: , а в (4) - .

Применение метода МНК для оценки коэффициентов соответствующих выборочной регрессии приводит к следующим системам уравнений. Для регрессии (!):

(5).

Для равносторонней гиперболы система уравнений имеет вид:

(6)

Для уравнения (4):

 

(7)


Приведем некоторые примеры использования уравнений (1-4) в экономике:

1. Полином третьей степени уравнения (2) часто моделирует зависимость общих издержек У от объема выпуска Х. график имеет вид:

2. Полином второй степени (уравнение (1)) парабола может описать зависимость между объемом выпуска Х и средними (либо предельными) издержками У

3. Гипербола (3) (обратная модель) применяется в тех случаях, когда неограниченное увеличение объясняющей переменной Х асимптотически приближает зависимую переменную У к некоторому пределу. Если а и в - оценки параметров гиперболы соответственно, то в зависимости знаков а и в возможны следующие ситуации:

рис.1 рис.2 рис.3

График на рисунке 1 может отражать зависимость между объемом выпуска Х и средними фиксированными издержками У. график на рисунке 2 может описывать зависимость между доходом Х и спросом на блага У. Такие функции называются функциями Тронквиста. Важным приложением графика на рисунке 3 является кривая Филипса, отражающая зависимость между уровнем безработицы Х (%) и процентным изменением заработной платы У.

4. Уравнения с квадратными корнями (4) использовались в исследовании урожайности и трудоемкости с/х производства.

Пример 1:

На основании информации о норме безработицы и темпах инфляции (таблица 1) построить:

1. диаграмму рассеяния.

2. уравнение регрессии, описывающее зависимость темпов инфляции от нормы безработицы.

 

 

Таблица 1

№ наблюдения, i Темпы инфляции, уi Норма безработицы, хi zi
  1,1 1,1 1,2 1,3 1,7 2,9 4,2 5,4 6,5 5,4 5,5 5,0 4,4 3,7 3,5 3,4 0,154 0,185 0,182 0,2 0,227 0,270 0,286 0,294

 

Строим диаграмму рассеяния:

Из диаграммы рассеяния видно, что зависимость можно описать гиперболой . Сделаем замену переменных и уравнение регрессии примет вид:

Обратимся в Excel к программе регрессия и введем данные zi, , получим:

Замечание:

Для оценки коэффициентов гиперболы можно построить систему уравнений (6) и решить ее.

 

2.

К нелинейным по параметрам регрессиям относятся:

степенная: , (8)

показательная , (9)

экспоненциальную . (10)

Нелинейные по параметрам регрессии сводятся к линейным путем логарифмирования.

(8’)

(9’)

(10’)

 

Для нахождения оценок соответствующих коэффициентов выборочных регрессии для (8’), (9’),(10’) используется МНК при условии, что распределен нормально.

Пример 2:

В таблице 2 приведены данные о расходах на питание и доходах 5 групп населения. Построить степенную регрессию, описывающую зависимость расходов на питание У от доходов населения Х.

Таблица 2

Доходы, х Расходы, у
      1,69 1,79 2,3 2,6 2,9 0,69 1,39 2,4 2,48

 

Степенная регрессия имеет вид:

Получим линейное уравнение. Обратимся к программе «Регрессия», введем данные столбцов v и z, получим:

(11)

Выполним обратные преобразования (пропотенцируем полученное уравнение):

Замечание:

Для построения регрессии (11) можно воспользоваться формулами (8) темы 2.

 

3.

Уравнение нелинейной регрессии также как и линейной дополняются показателями корреляции и детерминации. Для оценки тесноты связи между переменными рассчитывается индекс корреляции:

(12)

Индекс корреляции (R) меняется от 0 до 1. чем ближе R к 1, тем сильнее нелинейная связь между переменными. Величина

(13)

используется для оценки качества уравнения регрессии. Для проверки значимости индекса детерминации используется F-статистика

n – объем выборки

m – число параметров при независимых переменных.

Так для параболы m=2, а для степенной функции m=1

4.

В экономическом анализе часто используется эластичность функции. Эластичность функции рассчитывается как относительное изменение у к относительному изменению х:

(15)

Эластичность показывает, насколько процентов изменяется функция при изменении независимой переменной на 1 %.

Для степенной функции эластичность представляет собой постоянную величину, равную в, действительно:

В примере 2 степенная регрессия описывает зависимость расходов на питание от доходов. Коэффициент 0,35 экономического смысла не имеет, а коэффициент в, равный 1,183, показывает, что увеличение личного дохода на 1% приведет к увеличению расходов на питание в среднем на 1,183%.

Для остальных функций эластичность не является постоянной величиной. Так для линейной функции эластичность , т.е. эластичность зависит от х, поэтому для остальных функций вычисляется средний показатель эластичности, в частности для линейной функции по формуле:

(16)

Рассчитаем коэффициент эластичности в примере 1 темы 2:

Можно утверждать, что с увеличением расходов на новое оборудование на 1%, прибыль предприятия возрастет на 1,29%.


Тема 4:







Дата добавления: 2015-09-19; просмотров: 471. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия