Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задание 2. .





                         
                         

 

 

Построим диаграмму рассеивания экспериментальных данных:

· Выделим диапазон А1:В14, содержащие данные наблюдения;

· В меню Вставка выберем вид диаграммы: Точечная (в виде изолированных точек).

Рис. 4. Исходные данные и диаграмма рассеивания.

Линейное расположение точек и их сравнительно небольшой разброс относительно воображаемой прямой дают серьёзные основания для выбора линейной модели регрессии. Для более детального анализа возможности использования этой модели воспользуемся статистической процедурой Регрессия, входящей в Пакет анализа.

· В меню Данные выбираем Анализ данных – Регрессия – ОК. Откроется диалоговое окно Регрессия с пульсирующим курсором в поле ввода Входной интервал Y.

· Заполним поля (Рис. 5) и щёлкнем кнопку ОК.

Рис. 5

На вновь открывшемся рабочем листе появятся таблицы результатов реализации этой процедуры и График подбора.

Рис. 6. Результаты анализа линейной модели регрессии

Используя оценки и (ячейки В17 и В18) параметров регрессии и , запишем выборочное уравнение парной линейной регрессии:

Близкий к единице коэффициент детерминации (ячейка В5), очень большое расчётное значение статистики (ячейка Е12) и ничтожно малая значимость Значимость свидетельствуют о высокой адекватности линейной модели (1). Это подтверждает и Х График подбора:

Рис. 7. Графическая иллюстрация результатов анализа модели регрессии

Большое значение статистики (ячейка D18) и крайне малая Р-значимость (ячейка Е18) свидетельствует о том, что выборочный коэффициент регрессии существенно (значимо) отличается от нуля. Об этом же говорит и доверительный интервал для коэффициента регрессии (ячейки F18 и G18), соответствующий доверительной вероятности – нулевое значение коэффициента регрессии в этот интервал не попадает.

Проверка значимости постоянной регрессии приводит к противоположному результату. Довольно большая значимость Р-значение (ячейка Е17) свидетельствует о том, что постоянная регрессии несущественно (незначимо) отличается от нуля. Это подтверждает и доверительный интервал для постоянной регрессии , соответствующий доверительной вероятности (ячейки F16:G16). Этот интервал накрывает нулевое значение постоянной .

 

 


 







Дата добавления: 2015-09-19; просмотров: 373. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия