Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерий Коши для последовательностей.





Последовательность { xn } назовем последовательностью Коши или фундаментальной, если

Теорема (Критерий Коши) Для того, чтобы последовательность { xn } сходилась, необходимо и достаточно чтобы она была фундаментальной.

Доказательство: Необходимость. Пусть {xn} сходится.

Достаточность. Пусть {xn} - фундаментальная последовательность. Докажем, что она ограничена и .

Так как последовательность фундаментальна, то , в -окресности которой сущ-ют все элементы x1,x2,x3,...,xN − 1.

Предположим, A = max{ | x1 |, | x2 |, | x3 |,..., | xN − 1 |, | xn − ε |, | xn + ε | }. В отрезке [A, -A] содержатся все элементы последовательности, т.е. {xn} - ограниченна. В следствие теоремы Больцано-Вейерштрасса () < (xn − ε;xn + ε).

в силу произвольности .

,

Эквивалентность определений предела функции по Гейне и по Коши.

Теорема о существовании корня непрерывной функции.

Если функция непрерывна на отрезке и принимает на его концах значения разных знаков, то на этом отрезке существует по крайней мере один корень уравнения.

 

Ая теорема Вейерштрасса для непрерывных функций.

Ая теорема Вейерштрасса для непрерывных функций.

Теорема Кантора.

Теорема о производной композиции функций.

Теорема о производной обратной функции.







Дата добавления: 2015-09-15; просмотров: 474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия