Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Необходимое условие экстремума дифференцируемой функции (теорема Ферма).





Теорема:для любого натурального числа n>2 уравнение

xn + yn = zn не имеет реш-ий в целых ненулевых числ. x,y, z. Доказательство:

В прямоугольном треугольнике, имеющем стороны x, y, z1 (рис.1), выполняется равенство z12 = x2 + y2. При показателе степени n>2 z1n = (x2 + y2)n/2 > xn + yn (2) Очевидно, что в формуле zn = xn + yn (3)

z > y ≥ x или z > x ≥ y.

Таким образом, можно констатировать, что равенству

zn = xn + yn при n>2 соответствует фигура, назовём её "разомкнутый прямоугольный треугольник", со сторонами x, y, z, у которого сторона z < z1 (4)

Гипотенуза разомкнутого прямоугольного треугольника не примыкает к катету. У разомкнутого прямоугольного треугольника z2 < x2 + y2 (5)

Условиям (3) и (5) удовлетворяет также остроугольный треугольник, имеющий стороны x, y, z и противолежащий стороне z угол z, причём π/3 < z < π/2 (6)

Этот треугольник можно получить путём смыкания сторон разомкнутого прямоугольного треугольника.

Решение полученного остроугольного треугольника относительно стороны z, z2 = x2 + y2 – 2xycos z (7) Отсюда алгебраическим преобразованием получаем

zn = (x2 + y2 – 2xycos z)n/2 (8)

В результате можно записать

zn = xn + yn = (x2 + y2 – 2xycos z)n/2 (9)

Великая теорема Ферма в интерпретации количественного соотношения числа единичных объектов имеет тождество в геометрической интерпретации соотношения длины сторон треугольника.

Треугольник, согласно (5), можно преобразовать в прямоугольный треугольник со сторонами zn, xn и yn умножением длины каждой из сторон на коэффициенты zn-1, xn-1 и yn-1 соответственно. Его решение будет иметь вид

z2n = x2n + y2n (10)

Если стороны этого треугольника уменьшить до величин zn/2, xn/2 и yn/2, то по обратной аналогии с (2) получим разомкнутый прямоугольный треугольник, в решении которого

zn < xn + yn (11)

Но это значение zn нами уже получено алгебраическим преобразованием, (9).

Великая теорема Ферма опровергнута, если одновременно выполняются условия (9) и (11), то есть

zn < xn + yn = (x2 + y2 – 2xycos z)n/2 (12)

Очевидно, что (12) противоречит (9). Условие опровержения Великой теоремы Ферма не выполнено, следовательно, эта теорема верна.







Дата добавления: 2015-09-15; просмотров: 496. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия