Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционный анализ





Линейный коэффициент корреляции

- используется для изучения связи между двумя признаками в случае наличия между ними линейной зависимости и определяется по формуле:

Линейный коэффициент корреляции изменяется в пределах от –1 до 1 и выражает характер связи, чем ближе значение коэффициента к 1 (-1), тем теснее связь между признаками.

если , то связь отсутствует;

, связь прямая и однонаправленная;

, связь обратная;

(-1), связь функциональная.

В том случае когда исходная информация представлена в виде корреляционной таблицы необходимо учесть частоты повторений как индивидуальных значений факторного и результативного признаков, так и число повторений данного сочетания их значений. В этом случае формула коэффициента корреляции будет иметь вид:

Эмпирическое корреляционное отношение

- рассчитывается по данным группировки в случае не линейной зависимости между признаками и определяется по формуле:

, где

- межгрупповая дисперсия, характеризующая вариацию результативного признака, обусловленную группировочным признаком;

- общая дисперсия результативного признака.

Изменяется этот показатель в пределах от 0 до 1. Интерпретация значений коэффициента такова:

-если находится в пределах 0,1-0,3, то связь слабая;

- 0,3-0,5 – связь умеренная;

- 0,5-0,7 – связь заметная;

- 0,7-0,9 – связь высокая;

- 0,9-0,99 – связь очень высокая.

Индекс корреляции (теоретическое корреляционное отношение)

- используется для измерения связи при любой её форме и определяется по формуле:

, где

- дисперсия отклонений;

- дисперсия фактических значений результативного признака;

- дисперсия теоретических значений результативного признака.

Индекс корреляции изменяется в пределах от 0 до 1. Если он равен нулю, то связи между признаками У и Х нет. Чем он ближе к 1, тем связь между признаками теснее.

Частные коэффициенты корреляции

- применяется для характеристики тесноты связи между двумя признаками при фиксированном значении других признаков и определяется по формуле:

 

Коэффициент множественной корреляции

- в случае оценки связи между результативным (У) и двумя факторными (Х1, Х2) признаками множественный коэффициент корреляции имеет вид:

, где

r – парные коэффициенты корреляции между признаками.

Его значения находятся в пределах от 0 до 1. Чем ближе значение коэффициента к единице, тем теснее связь между признаками.

Множественный коэффициент корреляции можно рассчитать, используя парные коэффициенты корреляции (rУЧ) и β – коэффициенты:

 

Коэффициент детерминации

- показывает какая доля вариации изучаемого результативного признака объясняется влиянием факторов, включенных в уравнение множественной регрессии и представляет собой квадрат коэффициента корреляции:

d = r2 ·100% или d = R2 ·100%.

Изменяется в пределах от 0 до 100 и характеризует, на сколько процентов изменение результативного признака зависит от выбранных в модель факторных признаков. Остальные проценты (до 100) показывают влияние других, не учтенных в модели признаков.

Значимость линейного коэффициента корреляции проверяется на основе t- критерия Стьюдента:

- если объём совокупности (n) < 50 единиц, то формула критерия имеет вид

,

входные параметры:

.

Если расчетное значение t>tТ, то коэффициент корреляции принято считать значимым.

Если объём совокупности (n) более 100 единиц, то используется формула:

Проверка значимости коэффициента множественной корреляции осуществляется на основе F–критерия Фишера:

,

входные параметры:

Если F>FТ, то коэффициент множественной корреляции считается значимым.

Для выявления влияния каждого отдельного фактора на результативный признак вычисляют стандартизированные коэффициенты (коэффициенты эластичности и β - коэффициенты):

Коэффициенты эластичности (α- коэффициент)

Э , где

аi – коэффициент регрессии при i–м факторе;

- среднее значение i–го фактора;

- среднее значение результативного признака.

Коэффициент эластичности показывает, на сколько % в среднем изменится результативный признак с изменением на 1% каждого факторного признака при фиксированном значении других факторов.

β- коэффициенты

, где

σХ – среднее квадратическое отклонение i–го фактора;

σУ – среднее квадратическое отклонение результативного признака.

Бета коэффициент показывает, на какую часть среднего квадратического отклонения изменится результативный признак при изменении соответствующего факторного признака на свое среднее квадратическое отклонение.

 

Контрольные вопросы для самоподготовки:

1. Понятие о связях между явлениями. Виды и формы корреляционной зависимости. Методы исследования связей (графический, группировок, параллельных рядов).

2. Однофакторный и многофакторный корреляционно -регрессионный анализ. Проверка построенной модели на адекватность и мультиколлинеарность. Показатели тесноты связи: линейный коэффициент корреляции, индекс корреляции, эмпирическое и теоретическое корреляционное отношение. Коэффициент детерминации.

3. Непараметрические методы оценки связей. Коэффициенты ассоциации, контингенции, корреляции рангов Спирмена, Кенделла, коэф-т корреляции знаков Фехнера.

4. Применение КРМ в анализе и прогнозе. Автокорреляция и авторегрессия.

 

Список использованной литературы

Нормативно-правовые акты

1. Федеральный закон «Об официальном статистическом учете и системе государственной статистики в Российской Федерации» от 29 ноября 2007 года № 282-ФЗ.

2. Приказ Ростехрегулирования №329-ст от 22 ноября 2007 г. «О внедрении Общероссийского классификатора продукции по видам экономической деятельности (ОКПД)»

3. Федеральная целевая программа Развитие государственной статистики России в 2007-2011 годах.

4. Методологические положения по статистике. — М.: Росстат 2006 — Вып.5.

Базовый учебник

1. Статистика: Учебно-практич. пособие / Под. ред. М.Г. Назарова.- М.:КНОРУС,2006*;

2. Социально-экономическая статистика. Практикум / под ред. С.А. Орехова. – М.: Эксмо, 2007. – 384 с.*

Основная литература

1. Теория статистики: Учебник / Под ред. Р.А. Шмойловой.-5-е изд.- М.: Финансы и статистика, 2005;*

2. Практикум по теории статистики. Учебное пособие. /Под ред. Шмойловой Р.А. - М.: Финансы и статистика, 2002*;

3. Статистика финансов: Учеб. Пособие / под ред.М.Г. Назарова. – М: Омега-Л, 2005. – 380 с.*

4. Статистика: Учебник / Под ред. В.Г. Ионина.-3-е изд., перераб. и доп.-М.: ИНФРА-М, 2006*

Дополнительная литература

1. Статистика: Учебник / Под ред. И.И. Елисеевой.-М.: Высшее образование, 2006*;

2. Гусаров В.М. Статистика: Учеб. пособие для вузов. - М: ЮНИТИ-ДАНА, 2001*;

3. Статистика: Учебник / Под ред. B.C. Мхитаряна.-М.: Экономистъ, 2005*;

4. Статистика: Учеб.пособие / Под ред. В.М. Симчеры.- М.: Финансы и статистика, 2005*;

5. Салин В.Н., Чурилова Э.Ю. Курс теории статистики для подготовки специалистов финансово-экономического профиля: Учебник. - М.: Финансы и статистика, 2006*;

6. Журнал «Вопросы статистики».

 

 







Дата добавления: 2015-09-15; просмотров: 4028. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия