Недостатки традиционных технологий
К сожалению, классические методики оказываются малоэффективными во многих практических задачах. Это связано с тем, что невозможно достаточно полно описать реальность с помощью небольшого числа параметров модели, либо расчет модели требует слишком много времени и вычислительных ресурсов. 1. В реальной задаче ни одна из функций не известна точно - известны лишь приблизительные или ожидаемые значения прибыли. Для того, чтобы избавиться от неопределенности, мы вынуждены зафиксировать функции, теряя при этом в точности описания задачи. 2. Детерминированный алгоритм для поиска оптимального решения (симплекс-метод) применим только в том случае, если все данные функции линейны. В реальных задачах бизнеса это условие не выполняется. Хотя данные функции можно аппроксимировать линейными, решение в этом случае будет далеким от оптимального. 3. Если одна из функций нелинейна, то симплекс-метод неприменим, и остается два традиционных пути решения этой задачи. Первый путь - использовать метод градиентного спуска для поиска максимума прибыли. В данном случае область определения функции прибыли имеет сложную форму, а сама функция - несколько локальных максимумов, поэтому градиентный метод может привести к неоптимальному решению. Вероятностные технологии также обладают существенными недостатками при решении практических задач. Мы проиллюстрировали работу вероятностного подхода на примере простой линейной авторегрессионной модели, однако зависимости, встречающиеся на практике, часто нелинейны. Даже если и существует простая зависимость, то ее вид заранее неизвестен. Отметим также, что статистические методы хорошо развиты только для одномерных случайных величин. Если же мы хотим учитывать для прогнозирования курса акций несколько взаимосвязанных факторов (например, объем сделок, курс доллара и т.д.), то придется обратиться к построению многомерной статистической модели. Однако, такие модели либо предполагают гауссовское распределение наблюдений (что не выполняется на практике), либо не обоснованы теоретически. В многомерной статистике за неимением лучшего нередко применяют малообоснованные эвристические методы, которые по своей сути очень близки к технологии нейронных сетей. Об этом будет более подробно сказано в следующем разделе.
|