Средние и скользящие средние
Самой простой моделью, основанной на простом усреднении является Y(t+1)=(1/(t))*[Y(t)+Y(t-1)+...+Y(1)], и в отличии от самой простой "наивной" модели, которой соответствовал принцип "завтра будет как сегодня", этой модели соответствует принцип "завтра будет как было в среднем за последнее время". Такая модель, конечно более устойчива к флуктуациям, поскольку в ней сглаживаются случайные выбросы относительно среднего. Несмотря на это, этот метод идеологически настолько же примитивен как и "наивные" модели и ему свойственны почти те же самые недостатки. В приведенной выше формуле предполагалось, что ряд усредняется по достаточно длительному интервалу времени. Однако как правило, значения временного ряда из недалекого прошлого лучше описывают прогноз, чем более старые значения этого же ряда. Тогда можно использовать для прогнозирования скользящее среднее Y(t+1)=(1/(T+1))*[Y(t)+Y(t-1)+...+Y(t-T)], Смысл его заключается в том, что модель видит только ближайшее прошлое (на T отсчетов по времени в глубину) и основываясь только на этих данных строит прогноз. При прогнозировании довольно часто используется метод экспоненциальных средних, который постоянно адаптируется к данным за счет новых значений. Формула, описывающая эту модель записывается как Y(t+1)= a *Y(t)+(1- a)*^Y(t), где Y(t+1) – прогноз на следующий период времени
Видно, что при a ->1, экспоненциальная модель стремится к самой простой "наивной" модели. При a ->0, прогнозируемая величина становится равной предыдущему прогнозу. Если производится прогнозирование с использованием модели экспоненциального сглаживания, обычно на некотором тестовом наборе строятся прогнозы при a =[0.01, 0.02,..., 0.98, 0.99] и отслеживается, при каком a точность прогнозирования выше. Это значение a затем используется при прогнозировании в дальнейшем. Хотя описанные выше модели ("наивные" алгоритмы, методы, основанные на средних, скользящих средних и экспоненциального сглаживания) используются при бизнес-прогнозировании в не очень сложных ситуациях, например, при прогнозировании продаж на спокойных и устоявшихся западных рынках, мы не рекомендуем использовать эти методы в задачах прогнозирования в виду явной примитивности и неадекватности моделей. Вместе с этим хотелось бы отметить, что описанные алгоритмы вполне успешно можно использовать как сопутствующие и вспомогательные для предобработки данных в задачах прогнозирования. Например, для прогнозирования продаж в большинстве случаев необходимо проводить декомпозицию временных рядов (т.е. выделять отдельно тренд, сезонную и нерегулярную составляющие). Одним из методов выделения трендовых составляющих является использование экспоненциального сглаживания.
|