Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Использование многослойных персептронов





Самый простой вариант применения искусственных нейронных сетей в задачах бизнес-прогнозирования - использование обычного персептрона с одним, двумя, или (в крайнем случае) тремя скрытыми слоями. При этом на входы нейронной сети обычно подается набор параметров, на основе которого (по мнению эксперта) можно успешно прогнозировать. Выходом обычно является прогноз сети на будущий момент времени.

Рассмотрим пример прогнозирования продаж. На рисунке представлен график, отражающий историю продаж некого продукта по неделям. В данных явно заметна выраженная сезонность. Для простоты предположим, что никаких других нужных данных у нас нет. Тогда сеть логично строить следующим образом. Для прогнозирования на будущую неделю надо подавать данные о продажах за последние недели, а также данные о продажах в течении нескольких недель подряд год назад, чтобы сеть видела динамику продаж один сезон назад, когда эта динамика была похожа на настоящую за счет сезонности.

Если входных параметров много, крайне рекомендуется не сбрасывать их сразу в нейронную сеть, а попытаться вначале провести предобработку данных, для того чтобы понизить их размерность, или представить в правильном виде. Вообще, предобработка данных - отдельная большая тема, которой следует уделить достаточно много времени, так как это ключевой этап в работе с нейронной сетью. В большинстве практических задач по прогнозированию продаж предобработка состоит из разных частей. Вот лишь один пример.

Пусть в предыдущем примере у нас есть не только историческая база данных о продажах продукта, которые мы прогнозируем, но и данные о его рекламе на телевидении. Эти данные могут выглядеть следующим образом

По оси времени отложены номера недель и рекламные индексы для каждой недели. Видно, что в шестнадцатую и семнадцатую недели рекламы не было вообще. Очевидно, что неправильно данные о рекламе подавать в сеть (если это не рекуррентная нейронная сеть) в таком виде, поскольку определяет продажи не сама реклама как таковая, а образы и впечатления в сознании покупателя, которые эта реклама создает. И такая реклама имеет продолжительное действие - даже через несколько месяцев после окончания рекламы на телевидении люди будут помнить продукт и покупать его, хотя, скорее всего, продажи будут постепенно падать. Поэтому пытаясь подавать в сеть такие данные о рекламе мы делаем неправильную постановку задачи и, как минимум, усложним сети процесс обучения.

При использовании многослойных нейронных сетей в бизнес-прогнозировании в общем и прогнозировании продаж в частности полезно также помнить о том, что нужно аккуратно делать нормировку и что для выходного нейрона лучше использовать линейную передаточную функцию. Обобщающие свойства от этого немного ухудшаются, но сеть будет намного лучше работать с данными, содержащими тренд.







Дата добавления: 2015-09-15; просмотров: 304. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия