Отметим, что задачи классификации (типа распознавания букв) очень плохо алгоритмизуются. Если в случае распознавания букв верный ответ очевиден для нас заранее, то в более сложных практических задачах обученная нейронная сеть выступает как эксперт, обладающий большим опытом и способный дать ответ на трудный вопрос.
Примером такой задачи служит медицинская диагностика, где нейронная сеть может учитывать большое количество числовых параметров (энцефалограмма, давление, вес и т.д.). Конечно, "мнение" нейронной сети в этом случае нельзя считать окончательным.
Классификация предприятий по степени их перспективности - это уже привычный способ использования нейронных сетей в практике западных компаний. При этом нейронная сеть также использует множество экономических показателей, сложным образом связанных между собой.
Нейросетевой подход особенно эффективен в задачах экспертной оценки по той причине, что он сочетает в себе способность компьютера к обработке чисел и способность мозга к обобщению и распознаванию. Говорят, что у хорошего врача способность к распознаванию в своей области столь велика, что он может провести приблизительную диагностику уже по внешнему виду пациента. Можно согласиться также, что опытный трейдер чувствует направление движения рынка по виду графика. Однако в первом случае все факторы наглядны, то есть характеристики пациента мгновенно воспринимаются мозгом как "бледное лицо", "блеск в глазах" и т.д. Во втором же случае учитывается только один фактор, показанный на графике - курс за определенный период времени. Нейронная сеть позволяет обрабатывать огромное количество факторов (до нескольких тысяч), независимо от их наглядности - это универсальный "хороший врач", который может поставить свой диагноз в любой области.