Регрессионные методы прогнозирования
Наряду с описанными выше методами, основанными на экспоненциальном сглаживании, уже достаточно долгое время для прогнозирования используются регрессионные алгоритмы. Коротко суть алгоритмов такого класса можно описать так. Существует прогнозируемая переменная Y (зависимая переменная) и отобранный заранее комплект переменных, от которых она зависит - X1, X2,..., XN (независимые переменные). Природа независимых переменных может быть различной. Например, если предположить, что Y - уровень спроса на некоторый продукт в следующем месяце, то независимыми переменными могут быть уровень спроса на этот же продукт в прошлый и позапрошлый месяцы, затраты на рекламу, уровень платежеспособности населения, экономическая обстановка, деятельность конкурентов и многое другое. Главное - уметь формализовать все внешние факторы, от которых может зависеть уровень спроса в числовую форму. Модель множественной регрессии в общем случае описывается выражением В более простом варианте линейной регрессионной модели зависимость зависимой переменной от независимых имеет вид: Здесь - подбираемые коэффициенты регрессии, Для построения регрессионных моделей необходимо иметь базу данных наблюдений примерно такого вида:
С помощью таблицы значений прошлых наблюдений можно подобрать (например, методом наименьших квадратов) коэффициенты регрессии, настроив тем самым модель. При работе с регрессией надо соблюдать определенную осторожность и обязательно проверить на адекватность найденные модели. Существуют разные способы такой проверки. Обязательным является статистический анализ остатков, тест Дарбина-Уотсона. Полезно, как и в случае с нейронными сетями, иметь независимый набор примеров, на которых можно проверить качество работы модели.
|