Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПОЛИМЕРЫ, ПОЛУЧАЕМЫЕ СТУПЕНЧАТОЙ ПОЛИМЕРИЗАЦИЕЙ





(ПОЛИКОНДЕНСАЦИОННЫЕ ПОЛИМЕРЫ)

 

 

 


Рис. 1. Производство новолачных смол периодическим способом:

1–5, 9, 13 – мерники для сырья и реагентов; 6 – фильтр; 7 – реактор; 8, 12 – напорные ёмкости; 10 – аппарат для приготовления раствора щавелевой кислоты; 11 – плавитель; 14 – холодильник-конденсатор; 15 – сборник надсмольной воды; 16 – охлаждающий барабан; 17 – транспортер; К – конденсат


 

 


Рис. 2. Производство новолачных смол непрерывным способом:

1 – дозировочный насос; 2 – реактор; 3, 9 – холодильники; 4 – фильтр;
5 – флорентийский сосуд; 6 – шестеренчатый насос; 7 – сушильный аппарат;
8 – стандартизаторы; 10 – сборник фенольной воды; 11 – охлаждающий барабан


 

 


Рис. 3. Производство сухих резольных смол:

1, 2, 5 – весовые мерники; 3 – реактор; 4 – вакуум-сборник; 6 – холодильник-конденсатор; 7 – сборник надсмольных вод; 8 – вагон-холодильник


 

 

 


Рис. 4. Производство карбамидных конденсационных растворов и смол периодическим методом:

1 – реактор; 2 – хранилище формалина; 3 – подогреватель; 4 – напорная емкость; 5, 7 – мерники; 6 – сетчатый фильтр; К – конденсат

 


 

 


Рис. 5. Производство мочевиноформальдегидных смол непрерывным методом (моноаппаратная схема):

1 – аппарат для приготовления раствора уротропина в формалине;
2, 10, 12 – фильтры; 3 – напорный бак; 4 – реактор; 5 – ёмкость с ворошителем; 6, 8 – шнековые питатели; 7 – дозировочные весы; 9, 11 – холодильники;
13 – приемник-стандартизатор

 


 

 

 

 


Рис. 6. Производство унифицированных карбамидных смол непрерывным методом (двухаппаратная схема):

1 – смеситель-нейтрализатор формалина; 2 – сборник для растворения мочевины; 3 – первый корпус реактора; 4, 6 – обратные холодильники;
5 – второй корпус реактора; 7 – выпарной аппарат; 8 – холодильник-конденсатор; 9 – сборник-нейтрализатор смолы; 10 – реактор дополиконденсации; НМС – низкомолекулярное соединение

 

 


 

 

 


Рис. 7. Непрерывное производство поликапроамида гидролитической полимеризацией:

1, 12 – бункеры; 2 – плавитель; 3 – фильтр; 4 – реактор; 5 – аппарат для растворения соли АГ; 6 – холодильники; 7 – сборник; 8 – охлаждающий барабан; 9 – направляющие валки; 10 – тянущие валки; 11 – резательный станок;
13 – экстрактор; 14 – гребковая вакуумная сушилка; К – конденсат

 


 

 
e-Капролактам и соль АГ
 
Уровень e-капролактама
I секция
 
 
 
 
 
Уровень полимера
 
 
 
III секция
 
II секция
 
 
 
 
Полиамидная лента или нить

 


 

 

Рис. 8. Колонна непрерывной полимеризации капролактама:

1 – смотровое стекло; 2 – воздушники; 3 – штуцер для уровнемера;
4 – электронагревательные пакеты; 5 – перфорированные тарелки; 6 – внутренняя труба; 7 – наружная труба; 8 – паровая рубашка; 9 – поворотная регулировочная заслонка; 10 – регулирующий винт

 

 

 


Рис. 9. Производство капролона в формах щелочной полимеризацией:

1 – плавитель; 2 – фильтр; 3 – реактор; 4 – аппарат для приготовления раствора N -ацетилкапролактама; 5 – смеситель; 6 – форма; 7 – термошкафы; 8 – насосы;
К – конденсат

 


 

 


Рис. 10. Производство соли АГ:

1 – аппарат для растворения адипиновой кислоты; 2 – реактор; 3 – аппарат для осаждения соли АГ; 4 – центрифуга; 5 – ловушка; ГМДА – гексаметилендиамин

 


Рис. 11. Производство полиамида-66:

1 – реактор; 2 – холодильник; 3 – сборник воды; 4 – охлаждающая ванна; 5 – направляющие валки; 6 – тянущие валки; 7 – резательный станок; 8 – вакуум-гребковая сушилка; К – конденсат; НМС – низкомолекулярное соединение

 

   
 

 

 


 

 

 


Рис. 13. Производство полиэтилентерефталата переэтерификацией:

1, 6 – реакторы; 2 – насадочная колонна; 3, 7 – холодильники-конденсаторы;
4, 8 – приёмник; 5 – фильтр; 9 – охлаждаемый барабан; 10 – рубильный станок

 


 

 

 


 

 

 


Рис. 15. Производство поликарбоната дифлон методом переэтерификации:

1 – ёмкость фосгена; 2, 7 – реакторы; 3 – ректификационная колонна;
4 – холодильник-конденсатор (дефлегматор); 5 – фильтрующая центрифуга;
6 – сушилка; 8 – сборник-конденсатор фенола; 9 – экструдер

 


 

 

 

 


Рис. 16. Непрерывное производство поликарбоната дифлон эмульсионной поликонденсацией:

1 – бункер-дозатор; 2, 6, 7, 8 – реакторы; 3 – расходная ёмкость раствора дифенолята натрия; 4 – ротаметр; 5 – мерник; 9, 11 – флорентийские сосуды;
10 – промывная колонна; 12 – напорная ёмкость; 13 – ректификационная колонна; 14 – дефлегматор; 15, 17, 19 – теплообменники; 16 – фильтр;
18 – осадительная колонна; 20 – гранулятор; П – пар; К – конденсат


 

 

 


Рис. 17. Производство смешанного полиарилата ДВ эмульсионной поликонденсацией:

1, 4 – реакторы; 2 – фильтры; 3 – аппарат для приготовления органической фазы; 5 – сборник суспензии; 6 – центрифуга; 7 – бункер с питателем; 8 – сушилка в «кипящем слое»; 9 – циклон; 10 – скруббер; 11 – сборник готового продукта;
12 – насосы


 

 

 

 


Рис. 18. Производство полиэфирмалеината:

1 – хранилище диэтиленгликоля; 2 – перегонный куб; 3, 8, 9 – холодильники;
4, 10 – приёмники; 5 – мерник; 6 – подогреватель; 7 – реактор;
ДЭГ – диэтиленгликоль; П – пар; К – конденсат


 

 

 


Рис. 19. Производство эпоксидиановых смол периодическим методом:

1 – реактор; 2, 13 – холодильники-конденсаторы; 3, 4 – мерники;
5, 8, 11 – приёмник; 6 – отстойно-промывная колонна; 7, 10 – рукавные
фильтры; 9, 14 – сборники; 12 – отгонный аппарат; П – пар; К – конденсат

 


 

 


Рис. 20. Непрерывное производство жидких эпоксидных смол:

1 – аппарат для приготовления раствора дифенилолпропана; 2 – аппарат для растворения эпихлоргидрина; 3 – реактор; 4, 7 – отстойник; 5, 9 – циклонные аппараты; 6, 10 – холодильники-конденсаторы; 8 – фильтр; 11 – сборник

 

 

 

 


Рис. 21. Производство полиметил- и полидиметилфенилсилоксановых лаков:

1 – мерник; 2 – колонна; 3 – струйный смеситель; 4, 5, 6 – флорентийские сосуды; 7 – сборник; 8 – смеситель; 9 – отгонный куб; 10 – реактор


 







Дата добавления: 2015-09-15; просмотров: 822. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия