Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Родственники


 

В методе Кранка-Николсона экспоненциал матрицы и интеграл аппроксимируются с большей точностью, чем в методе Эйлера:

Подставляя данные выражения в уравнение, получим:

 

 

Умножая слева на получаем:

 

Выражение в правой части считается явно, чтобы найти v(t+dt) нужно дважды решить систему линейных алгебраических уравненений. Это делается методом прогонки.

 

Исходный код программы:

 

#include<iostream>

#include<math.h>

#include<cstdlib>

#include<cstdio>

 

using namespace std;

 

#define sqr(x) ((x) * (x))

 

const int Nx = 40;

const double Nt = 6000;

 

 

double alpha, beta; double dx;

 

double a [Nx], b [Nx], c[Nx];

 

//Умножение вектора u на матрицу (E + lambda*A):

void matrix(double *u, double lambda) {

 

double dx = 1 / double(Nx);

double alpha = -1.0;

double beta = -2.0 + (1 - dx / 2) / (1 + dx / 2);

 

double v [Nx];

for (int i=1; i<Nx-1; i++) {

v[i] = u[i] + lambda * (u[i - 1] - 2.0 * u[i] + u[i + 1]) /sqr(dx) * D;

 

}

v[0] = u[0] + lambda * (beta * u[0] - u[1]) /sqr (dx) * D;

v[Nx - 1] = u[Nx - 1] + lambda * (u[Nx - 2] + u[Nx - 1] * alpha) /sqr (dx) * D;

 

for (int i = 0; i < Nx; i++) u[i] = v[i];

}

 

//Метод прогонки:

void sweep(double *u) {

for (int j = 0; j < Nx - 1; j++){

 

double w = b[j] / a[j];

a[j + 1] -= c[j] * w;

u[j + 1] -= u[j] * w;

}

for (int j = Nx - 1; j > 0; j--) {

double w = c[j - 1] / a[j];

u[j - 1] -= u[j] * w;

u[j] /= a[j];

}

u[0] /= a[0];

}

 

 

int main() {

 

double l=1, tau=1;

double xx = 2 * l / 3.0;

double tt = 5 * tau; //момент выхода из цикла по t

double dx = 1 / double(Nx);

double dt = tau / Nt;

double alpha = -1.0;

double beta = -2.0 + (1 - dx / 2) / (1 + dx / 2);

double D = sqr(l) / tau;

 

double u[Nx];

 

 

//задание начальных условий:

for (int i = 0; i < Nx; i++) {

u[i] = fabs((i + 0.5) * dx - (2*l/3.0)) < l / 10.0? 1.0: 0.0;

}

 

freopen("krahk_nicholson_t", "w", stdout);

 

int Ntt = tt / dt;

 

//Вычисление u в точке 2*l/3:

for (int i = 0; i < Ntt; i++) {

if (i < Nt)

cout << dt * i << " " <<

u[(int) (xx / l * double(Nx))] - (1 - exp(-i * dt / tau))<< '\n';

 

 

double q = 1.0 / tau * exp(-1 * i * dt / tau); //источник тепла в уравнении

double qq = exp(-1 * dt / tau);

 

 

//Вычисление правой части основной формулы:

double v[Nx], w[Nx], p[Nx];

for (int j = 0; j < Nx; j++) v[j] = u[j]; //v(t)

matrix(v, dt / 2);

matrix(v, dt / 2);

 

for (int j = 0; j < Nx; j++) w[j] = qq * q * dt / 2.0; //q(t+dt)

matrix(w, -dt / 2);

matrix(w, -dt / 2);

 

for (int j = 0; j < Nx; j++) p[j] = q * dt / 2.0; //q(t)

matrix(p, -dt / 2);

matrix(p, dt / 2);

 

 

for (int j = 0; j < Nx; j++) v[j] += w[j] + p[j];

 

//вычисление коэффициентов трехдиагональной матрицы:

for (int j = 0; j < Nx - 1; j++) {

a[j] = 1.0 + dt / sqr(dx) * D; b [ j ] = c [j] = -dt / sqr(dx) / 2 * D;

}

a[0] = 1 - dt * beta / 2 / sqr(dx) * D;

a[Nx - 1] = 1 - dt * alpha / 2 / sqr(dx) * D;

 

sweep(v);

 

//вычисление коэффициентов трехдиагональной матрицы:

for (int j = 0; j < Nx - 1; j++) {

a[j] = 1.0 - dt / sqr(dx) * D; b [j] = c [j] = +dt / sqr(dx) / 2 * D;

}

a[0] = 1 + dt * beta / 2 / sqr(dx) * D;

a[Nx - 1] = 1 + dt * alpha / 2 / sqr(dx) * D;

 

sweep(v);

 

 

for (int j = 0; j < Nx; j++) u[j] = v[j];

}

 

 

freopen("krank_nicholson_x", "w", stdout);

 

// зависимость от x:

 

for (int i = 0; i < Nx; i++) {

 

cout << (i + 0.5) * dx << " " << u[i] - (1 - exp(- 1.0 * tt / tau)) << "\n";

}

 

return 0;

 

}

 

При построении данных графиков для обеспечения устойчивости нам хватило Nx=40; Ny=6000.

 

 

 

 

Вывод:

Мы получили решение исходной задачи тремя методами. Графики решений соответствуют физическому смыслу задачи и достаточно хорошо соответствуют друг другу.

Метод суммирования ряда Фурье самый простой по сложности реализации и самый быстрый, но он требует полного аналитического решения задачи, и в этом смысле достаточно трудоемкий. Он вполне годится для построения графиков уже известных решений.

Явный метод Эйлера и метод Кранка-Николсона более сложны в написании и работают медленнее, особенно метод Кранка-Николсона, требующий большого количества вычислений на каждом шаге, но эти методы не требуют знания решения уравнения. Они также позволяют построить график решения с требуемой точностью. Пожалуй, самым эффективным является явный метод Эйлера, так как он требует гораздо меньше вычислений, чем метод Кранка-Николсона, хотя количество разбиений по времени в нем гораздо больше, и дает вполне приемлемую точность. Метод Кранка-Николсона гораздо более дорогой, но он обеспечивает нам безусловно устойчивое решение при достаточно малом количестве точек разбиения по времени.

 

Родственники

На данный момент самыми ближайшими родственниками русского языка являются восточнославянские языки: белорусский и украинский.

Южнославянские языки: болгарский, сербский, хорватский, македонский и словенский.

Западнославянские языки: польский, чешский, словацкий и лужицкий.




<== предыдущая лекция | следующая лекция ==>
Задание 3. Метод Кранка-Николсона | ОБ АМУЛЕТАХ-ЗМЕЕВИКАХ И ИХ СВЯЗИ С НАТЕЛЬНЫМИ КРЕСТАМИ И ИНЫМИ ПРЕДМЕТАМИ ЦЕРКОВНОЙ КУЛЬТУРЫ

Дата добавления: 2015-09-15; просмотров: 396. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия