Любую функцию, кроме констант 0 и 1, можно представить в виде как СДНФ, так и СКНФ.
Этот факт является теоремой алгебры логики. Из него следует, что любая формула (кроме констант 0 и 1) может быть преобразован к виду как СДНФ, так и СКНФ. Константа 0 может быть представлена только СКНФ (), а константа 1 – только СДНФ (). Из вышесказанного следует, что если надо построить формулу некоторой функции по таблице истинности этой функции, то всегда можно получить СКНФ или СДНФ этой функции.
Алгоритм получения СДНФ по таблице истинности:
– для 2-й строки; – для 3-й строки.
Алгоритм получения СКНФ по таблице истинности:
– для 1-й строки; – для 4-й строки.
Покажем, что полученные по двум алгоритмам СДНФ и СКНФ эквивалентны. Преобразуем СКНФ по правилам алгебры логики: . Примечание: для нахождения формулы по таблице истинности рекомендуется использовать тот из двух алгоритмов, в котором в таблице помечается меньше строк.
|