Методика обработки косвенных измерений
Допустим, что физическая величина находится в некоторой функциональной зависимости от других , при этом можно непосредственно измерить приборами. Пусть также мы провели несколько измерений каждой из величин и получили ряд значений (число измерений каждого из аргументов не обязательно одинаково). Как и прежде для искомой необходимо определить и указать с заданной доверительной вероятностью интервал, в котором лежит её истинное значение. Для этого необходимо обработать по методике прямых измерений каждую из величин (по формулам 1-7 вычислить – средние значения; – полные ошибки и – относительные погрешности). Затем вычисляют среднее значение . (9) Определить погрешность в случае произвольной функциональной зависимости , можно применив следующую формулу (10) где , , – частные производные , вычисленные по средним значениям , а – соответствующие полные ошибки. Как показывает практика проведения лабораторных занятий, эта формула вызывает затруднения у студентов. В этой связи рассмотрим наиболее часто встречающиеся случаи функциональной зависимости . А) Пусть . Тогда , а полная ошибка . (11) Б) Пусть . В этом случае сначала найдем относительную погрешность : , (12) Учитывая что, , получим . (13) Заметим, что в выражениях 10,11 суммируются квадраты величин. Возможно, некоторыми из них можно пренебречь (см. пример 2). После вычислений остается записать ответ: , (%). Обработка результатов по методике косвенных измерений довольно трудоемкий процесс, вычисления можно существенно упростить, применив к косвенным измерениям методику прямых измерений. А именно из полученного ряда значений необходимо сосчитать несколько различных значений [ , , …, , можно комбинировать индексы у аргументов] и полагая, что они получены в результате непосредственного измерения, применить формулы 1-4. В этом случае, ни о какой инструментальной погрешности речи уже не идет и полная ошибка . Однако, пользоваться таким упрощением необходимо с осмотрительностью. (Запрещается в случае, когда нельзя пренебречь инструментальной погрешностью). Тем не менее, в большинстве лабораторных работ по физике это возможно. Окончательно записываем ответ в виде: , (%).
|