Подсчет критерия U Манна-Уитни.
1. Перенести все данные испытуемых на индивидуальные карточки. 2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, например синим. 3. Разложить все карточки в единый ряд по степени нарастания признака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой. 4. Проранжировать значения на карточках, приписывая меньшему значению меньший ранг. Всего рангов получится столько, сколько у нас (n1+п2). 5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие - в другой. 6. Подсчитать сумму рангов отдельно на красных карточках (выборка 1) и на синих карточках (выборка 2). Проверить, совпадает ли общая сумма рангов с расчетной. 7. Определить большую из двух ранговых сумм. 8. Определить значение U по формуле: где n1 - количество испытуемых в выборке 1; n2 - количество испытуемых в выборке 2; Тх - большая из двух ранговых сумм; nх - количество испытуемых в группе с большей суммой рангов. 9. Определить критические значения U по Табл. II Приложения 1. Если Uэмп.>Uкp 005, Но принимается. Если Uэмп ≤;Uкp_005, Но отвергается. Чем меньше значения U, тем достоверность различий выше. Теперь проделаем всю эту работу на материале данного примера. В результате работы по 1-6 шагам алгоритма построим таблицу. Таблица 2.4 Подсчет ранговых сумм по выборкам студентов физического и психа-логического факультетов
Общая сумма рангов: 165+186=351. Расчетная сумма: Равенство реальной и расчетной сумм соблюдено. Мы видим, что по уровню невербального интеллекта более "высоким" рядом оказывается выборка студентов-психологов. Именно на эту выборку приходится большая ранговая сумма: 186. Теперь мы готовы сформулировать гипотезы: H0: Группа студентов-психологов не превосходит группу студентов-физиков по уровню невербального интеллекта. Н1: Группа студентов-психологов превосходит группу студентов-физиков по уровню невербального интеллекта. В соответствии со следующим шагом алгоритма определяем эмпирическую величину U: Поскольку в нашем случае п\Фп2, подсчитаем эмпирическую величину U и для второй ранговой суммы (165), подставляя в формулу соответствующее ей пх: Такую проверку рекомендуется производить в некоторых руководствах (Рунион Р., 1982; Greene J., D'Olivera M., 1989). Для сопоставления с критическим значением выбираем меньшую величину U: Uэмп=60. По Табл. II Приложения 1 определяем критические значения для n1 =14, n2=12. Мы помним, что критерий U является одним из двух исключений из общего правила принятия решения о достоверности различий, а именно, мы можем констатировать достоверные различия, если Uэмп ≤;Uкp Построим "ось значимости". Uэмп = 60 Uэмп >Uкp Ответ: H0 принимается. Группа студентов-психологов не превосходит группы студентов-физиков по уровню невербального интеллекта. Обратим внимание на то, что для данного случая критерий Q Розенбаума неприменим, так как размах вариативности в группе физиков шире, чем в группе психологов: и самое высокое, и самое низкое значение невербального интеллекта приходится на группу физиков (см. Табл. 2.4).
|