Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Квадратное уравнение





ax² +bx+c=0; (a¹ 0)

x1,2= (-b± Ö D)/2a; D=b² -4ac

D>0® x1¹ x2;D=0® x1=x2

D<0, корней нет.

Теорема Виета:

x1+x2 = -b/a

x1× x2 = c/a

Приведенное кв. Уравнение:

x² + px+q =0

x1+x2 = -p

x1× x2 = q

Если p=2k (p-четн.)

и x² +2kx+q=0, то x1,2 = -k± Ö (k² -q)

Нахождение длинны отр-ка по его координатам

Ö ((x2-x1)² -(y2-y1)²)

Логарифмы:

loga x = b => ab = x; a>0,a¹ 0

a loga x = x, logaa =1; loga 1 = 0

loga x = b; x = ab

loga b = 1/(log b a)

logaxy = logax + loga y

loga x/y = loga x - loga y

loga xk =k loga x (x >0)

logak x =1/k loga x

loga x = (logc x)/(logca); c>0,c¹ 1

logbx = (logax)/(logab)

Прогрессии

Арифметическая

an = a1 +d(n-1)

Sn = ((2a1+d(n-1))/2)n

Геометрическая

bn = bn-1 × q

b2n = bn-1× bn+1

bn = b1× qn-1

Sn = b1 (1- qn)/(1-q)

S= b1/(1-q)

Тригонометрия.

sin x = a/c

cos x = b/c

tg x = a/b=sinx/cos x

ctg x = b/a = cos x/sin x

sin (p -a) = sin a

sin (p /2 -a) = cos a

cos (p /2 -a) = sin a

cos (a + 2p k) = cos a

sin (a + 2p k) = sin a

tg (a + p k) = tg a

ctg (a + p k) = ctg a

sin² a + cos² a =1

ctg a = cosa / sina, a ¹ p n, nÎ Z

tga × ctga = 1, a ¹ (p n)/2, nÎ Z

1+tg² a = 1/cos² a, a ¹ p (2n+1)/2

1+ ctg² a =1/sin² a, a ¹ p n

Формулы сложения:

sin(x+y) = sin x cos y + cos x sin y

sin (x-y) = sin x cos y - cos x sin y

cos (x+y) = cos x cos y - sin x sin y

cos (x-y) = cos x cos y + sin x sin y

tg(x+y) = (tg x + tg y)/ (1-tg x tg y)

x, y, x + y ¹ p /2 + p n

tg(x-y) = (tg x - tg y)/ (1+tg x tg y)

x, y, x - y ¹ p /2 + p n

Формулы двойного аргумента.

sin 2a = 2sin a cos a

cos 2a = cos² a - sin² a = 2 cos² a - 1 =

= 1-2 sin² a

tg 2a = (2 tga)/ (1-tg² a)

1+ cos a = 2 cos² a /2

1-cosa = 2 sin² a /2

tga = (2 tg (a /2))/(1-tg² (a /2))

Ф-лы половинного аргумента.

sin² a /2 = (1 - cos a)/2

cos² a /2 = (1 + cosa)/2

tg a /2 = sina /(1 + cosa) = (1-cos a)/sin a

a ¹ p + 2p n, n Î Z

Ф-лы преобразования суммы в произв.

sin x + sin y = 2 sin ((x+y)/2) cos ((x-y)/2)

sin x - sin y = 2 cos ((x+y)/2) sin ((x-y)/2)

cos x + cos y = 2cos (x+y)/2 cos (x-y)/2

cos x - cos y = -2sin (x+y)/2 sin (x-y)/2

Формулы преобр. произв. в сумму

sin x sin y = ½ (cos (x-y) - cos (x+y))

cos x cos y = ½ (cos (x-y)+ cos (x+y))

sin x cos y = ½ (sin (x-y)+ sin (x+y))

Соотношение между функциями

sin x = (2 tg x/2)/(1+tg2x/2)

cos x = (1-tg2 2/x)/ (1+ tg² x/2)

sin2x = (2tgx)/(1+tg2x)

sin² a = 1/(1+ctg² a) = tg² a /(1+tg² a)

cos² a = 1/(1+tg² a) = ctg² a / (1+ctg² a)

ctg2a = (ctg² a -1)/ 2ctga

sin3a = 3sina -4sin³ a = 3cos² a sina -sin³ a

cos3a = 4cos³ a -3 cosa= cos³ a -3cosa sin² a

tg3a = (3tga -tg³ a)/(1-3tg² a)

ctg3a = (ctg³ a -3ctga)/(3ctg² a -1)

sin a /2 = ± Ö ((1-cosa)/2)

cos a /2 = ± Ö ((1+cosa)/2)

tga /2 = ± Ö ((1-cosa)/(1+cosa))=

sina /(1+cosa)=(1-cosa)/sina

ctga /2 = ± Ö ((1+cosa)/(1-cosa))=

sina /(1-cosa)= (1+cosa)/sina

sin(arcsin a) = a

cos(arccos a) = a

tg (arctg a) = a

ctg (arcctg a) = a

arcsin (sina) = a; a Î [-p /2; p /2]

arccos(cos a) = a; a Î [0; p ]

arctg (tg a) = a; a Î [-p /2; p /2]

arcctg (ctg a) = a; a Î [ 0; p ]

arcsin(sina)=

1)a - 2p k; a Î [-p /2 +2p k;p /2+2p k]

2) (2k+1)p - a; a Î [p /2+2p k;3p /2+2p k]

arccos (cosa) =

1) a -2p k; a Î [2p k;(2k+1)p ]

2) 2p k-a; a Î [(2k-1)p; 2p k]

arctg(tga)= a -p k

a Î (-p /2 +p k;p /2+p k)

arcctg(ctga) = a -p k

a Î (p k; (k+1)p)

arcsina = -arcsin (-a)= p /2-arccosa =

= arctg a /Ö (1-a ²)

arccosa = p -arccos(-a)=p /2-arcsin a =

= arc ctga /Ö (1-a ²)

arctga =-arctg(-a) = p /2 -arcctga =

= arcsin a /Ö (1+a ²)

arc ctg a = p -arc cctg(-a) =

= arc cos a /Ö (1-a ²)

arctg a = arc ctg1/a =

= arcsin a /Ö (1+a ²)= arccos1/Ö (1+a ²)

arcsin a + arccos = p /2

arcctg a + arctga = p /2

Тригонометрические уравнения

sin x = m; |m| = 1

x = (-1)n arcsin m + p k, kÎ Z

sin x =1 sin x = 0

x = p /2 + 2p k x = p k

sin x = -1

x = -p /2 + 2 p k

cos x = m; |m| = 1

x = ± arccos m + 2p k

cos x = 1 cos x = 0

x = 2p k x = p /2+p k

cos x = -1

x = p + 2p k

tg x = m

x = arctg m + p k

ctg x = m

x = arcctg m +p k

sin x/2 = 2t/(1+t2); t - tg

cos x/2 = (1-t²)/(1+t²)







Дата добавления: 2015-09-18; просмотров: 451. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия