Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

LINEAR ALGEBRA





Linear algebra like several other math disciplines may be considered from two different points of view: 1) as a branch of maths of independent interest with a development and with problems of its own; 2) as a tool for other math disciplines and for math physics, A large class of math problems is generally called "linear", the simplest problem is the following: Let a and b be two given (real or complex) numbers - to find a number x that satisfies the equation ax=b. The problem has a unique solution x, if, and only if, a ^0; no solution at all if a=0, b^0; an infinity of solutions, viz., all real (or complex) x if a=0 and b=0. This statement comprises the whole theory of the problem.

One of the main technical devices of linear algebra is the theory of determinants and for a long time it has been the only part of linear algebra which was studied systematically. This is the more surprising as the notion of matrix — the main object of modem linear algebra — is evidently more fundamental than that of a determinant because a determinant is only a certain number associated with a given square matrix. Whilst the notion of determinant was discovered by Leibnitz (c. 1690), the notion of matrix appeared only much later in 1854 in a paper by Cayley and independently in 1867 in a paper by Laguerre. Since then linear algebra and matrix calculus have developed into a vast domain of maths closely connected with a good many other math branches, such as the theory of groups, the theory of invariants, tensor calculus, the theory of systems of differential equations, etc. Linear algebra provides the methods of proof as well as the adequate algebraic formalism for a considerable part of analytic geometry. It has served as a model in recent developments of analysis (theory of integral equations and of linear transformation in infinite- dimensional spaces) which have considerably advanced this branch of maths and proved important in modern physics.

Vocabulary

to consider рассматривать
point of view точка зрения
own собственный
to satisfy удовлетворять, отвечать ч-л.
unique уникальный
statement утверждение
to comprise включать в себя, охватывать
main главный, основной
certain определенный
square квадрат
independently независимо от
since then с тех пор
a vast domain огромная область
to be closely connected быть тесно связанным

 

1. Answer the following questions:

1) What do we call “linear” in mathematics?

2) What is linear algebra connected with?

3) In what way are analytic geometry and algebra connected?

4) What definition can be applied to linear algebra?

5) What statement comprises the whole theory of the problem?

 

2. Translate from Russian into English.

1) Линейная алгебра превратилась в огромную область математики.

2) Она очень тесно связана со многими другими областями математики.

3) Один из главных технических механизмов линейной алгебры является теория детерминантов.

4) Эта теория долгое время была единственной частью линейной алгебры, которую систематически изучали.

5) Главная цель современной линейной алгебры очевидно более основательная, чем теория детерминантов.

 

3.Work in pairs. Discuss the problem how linear algebra developed into present form.

 

 

PART III

TESTS

The verb “to be”

 

1.My brother … in good health.

A) am B) is C) are

 

2. He … at school yesterday.

A) are B) were C) was

 

3. … she at home two hours ago?

A) was B) were C) shall be

 

4. Her parents … poor, she must earn her living herself.

A) was B) am C) are

 

5. … she … a student in a year?

A) shall be B) will be C) were

 

6. Nick … very busy today.

A) is B) am C) will be

 

7. … the weather fine?

A) was B) were C) am

 

8. I … in Moscow in two weeks.

A) will be B) am C) shall be.

 

9. My address … not difficult to remember.

A) am B) is C) are

 

10. This book … of no interest to us.

A) are B) am C) is

11. The paper … on the shelf yesterday.

A) were B) was C) are

 

12.We … students of the medical Institute soon.

A) will be B) shall be C) were

 

13.Helen … not in the street yesterday.

A) were B) was C) are

 

14.This little boy … five years old.

A) is B) are C) am

 

15. … Baikal the deepest lake in the world?

A) am B) are C) is

 

16. She …a old sick woman.

A) am B) is C) are

 

17. They … at the station last night.

A) are B) was C) were

 

18. The mountains … not very high in Great Britain.

A) is B) are C) was

 

19. … this flat comfortable?

A) is B) are C) am

 

20. Olga and Nick … at the station in 2 hours.

A) shall be B) will be C) were

 

21. They … good doctors in 6 years.

A) shall be B) will be C) are

 

22. She … ill and could not go there.

A) is B) was C)were

 

23.It … spring soon.

A) will be B) shall be C) is

 

24. Olga … very busy tomorrow.

A) is B) was C) will be

 

 

The verb “to have”

(have, has, had, will have, shall have)

1. What flat… your friend…?

A) do … have B) does have C) have

 

2. These students … English books.

A) has B) have C) do have

 

3. He … … breakfast in the morning.

A) don’t have B) have C) doesn’t have

 

4. Now his parents … a comfortable flat.

A) have B) has C) had

 

5. They … English yesterday.

A) has B) will have C) had

 

6. These students … … five examinations next year.

A) will have B) had C) does … have

 

7. … you … more or less free time now then you … last year?

A) does … have B) had C) do … have

 

8. We … no lectures on Sunday.

A) has B) don’t have C) have

 

9. They usually … their entrance examinations in June.

A) have B) has C) will have

 

10. This toy dog … a very interesting story.

A) have B) has C) don’t have

 

11. He … … any news from his friend.

A) didn’t have B) shan’t have C) had

 

12. They … … plenty of time to relax in summer.

A) had B) will have C) doesn’t have

 

 







Дата добавления: 2015-09-18; просмотров: 858. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия