Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

за первый семестр. Наша книга в основном была посвящена новому приему работы, который Станиславский открыл в последние годы жизни


Идти к раскрытию идейного решения образа, создать «живого человека» на сцене, используя замечательный опыт лучших мастеров нашего театра, относиться к своему делу с той ответственностью, которая только и может привести к положительным результатам,— вот наша общая задача.

Вопросы к зачету по математическому анализу

за первый семестр

1. Понятие числовой функции. Область определения, область и множество значений.

2. Способы задания функций.

3. Образ, прообраз элемента, множества.

4. Сложная функция (композиция отображений).

5. Постоянная функция, монотонная функция.

6. Взаимнооднозначное отображение. Обратная функция.

7 Окрестность, проколотая окрестность, окрестности символов бесконечности.

8. Понятие предельной точки множества

8. Предел функции.

10. Геометрический смысл предела функции.

11. Бесконечно малые, бесконечно большие и ограниченные функции.

12. Основные теоремы об ограниченных функциях, о бесконечно малых и бесконечно больших функциях.

13. Критерий существования конечного предела.

14. Теоремы о пределе суммы, произведения, частного.

15. Теорема о пределе постоянной, о вынесении числового множителя за знак предела.

16. Теорема о единственности предела.

17. Теорема о пределе промежуточной функции, о предельном переходе в неравенствах.

18. Два определения непрерывности функции. Теорема о равносильности этих определений.

19. Теоремы о непрерывности суммы, произведения, частного непрерывных функций.

20. Теорема о непрерывности сложной функции.

21. Основные теоремы о функциях, непрерывных на промежутке.

22 Точки разрыва и их классификация.

23. Условия непрерывности функции в точке.

24. Понятие производной функции и дифференциала. Геометрический смысл производной. Уравнение касательной.

25. Необходимое условие дифференцируемости функции.

26. Основные правила дифференцирования.

27. Теорема Ферма и ее геометрический смысл.

28. Теорема Лагранжа.

29. Теорема Ролля и ее геометрический смысл.

30. Определение монотонной функции. Признаки монотонности функции.

31. Экстремум функции. Необходимое условие существования экстремума.

32. Достаточное условие экстремума, основанное на первой производной.

33. Достаточное условие существования экстремума, основанное на второй производной.

34. Понятие выпуклой и вогнутой функций.

35. Понятие точки перегиба графика функции.

36. Признаки выпуклости и вогнутости.

37. Достаточное условие существования точки перегиба.

38. Асимптоты графика функции.

39. Первообразная функции, теоремы о первообразных.

40. Неопределенный интеграл и его свойства.

41. Теорема существования неопределенного интеграла.

42. Таблица неопределенных интегралов.

43. Метод подстановки в неопределенном интеграле.

44. Интегрирование по частям в неопределенном интеграле.

45. Понятие интегральной суммы. Определение определенного интеграла.

46. Теорема существования определенного интеграла

47.Геометрический смысл определенного интеграла.

48. Свойства определенного интеграла, выраженные равенствами.

49. Свойства определенного интеграла, выраженные неравенствами.

50. Теорема о среднем.

51. Определенный интеграл с переменным верхним пределом. Теорема о его дифференцируемости. Следствие из теоремы.

52. Формула Ньютона-Лейбница.

53. Теорема об интегрирования по частям в определенном интеграле.

54. Теорема о замене переменной в определенном интеграле.

55. Геометрические приложения определенного интеграла.

56. Несобственные интегралы 1 и 2 рода.




<== предыдущая лекция | следующая лекция ==>
ЗАКЛЮЧЕНИЕ . | за первый семестр

Дата добавления: 2015-09-18; просмотров: 316. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия