Решение линейных систем с помощью обратной матрицы.
Рассмотрим линейную систему (2.3): и введем следующие обозначения: - матрица системы, - столбец неизвестных, - столбец свободных членов. Тогда систему (2.3) можно записать в виде матричного уравнения: АХ = В. (3.1) Пусть матрица А – невырожденная, тогда существует обратная к ней матрица Умножим обе части равенства (3.1) слева на Получим Но тогда , а поскольку (3.2) Итак, решением матричного уравнения (3.1) является произведение матрицы, обратной к А, на столбец свободных членов системы (2.3).
Пример. Вернемся к системе Для нее Найдем : Следовательно, Таким образом, х = 1, у = 2, z = 3.
Лекция 4. Ранг матрицы. Теорема о ранге. Вычисление ранга матрицы. Совместность систем линейных уравнений. Теорема Кронекера-Капелли. Структура общего решения однородной системы линейных уравнений. Общее решение неоднородной системы линейных уравнений. Определение 4.1. Минором порядка k матрицы А называется определитель, составленный из элементов, стоящих на пересечении любых k строк и k столбцов данной матрицы.
Замечание. Таким образом, каждый элемент матрицы является ее минором 1-го порядка.
Определение 4.2. Ранг матрицы – это порядок ее наибольшего ненулевого минора.
Обозначения: r(A), R(A), Rang A.
Замечание. Очевидно, что значение ранга матрицы не может превышать меньшей из ее размерностей.
Примеры: 1. , r(A)=0. 2. . Матрица В содержит единственный ненулевой элемент - являющийся минором 1-го порядка. Все определители более высоких порядков, составленные из элементов этой матрицы, будут содержать 0-ю строку и поэтому равны 0. Следовательно, r(B)=1. 3. . Единственным минором 3-го порядка является определитель матрицы С, но он равен 0, поскольку содержит пропорциональные столбцы. Следовательно, r(C)<3. Для того, чтобы доказать, что r(C)=2, достаточно указать хотя бы один минор 2-го порядка, не равный 0, например, Значит, r(C)=2. 4. следовательно, r(E)=3.
Замечание. Для матриц большой размерности непосредственное вычисление всех миноров затруднительно. Поэтому в этом случае можно преобразовать матрицу к так называемому треугольному виду (когда элементы, стоящие ниже равны 0), воспользовавшись операциями, не изменяющими ранг матрицы (эквивалентными преобразованиями). К ним относятся: 1) транспонирование 2) умножение строки на ненулевое число 3) перестановка строк 4) прибавление к элементам данной строки элементов любой другой строки, умноженных на ненулевое число 5) вычеркивание нулевой строки. Действительно, любая из этих операций переводит нулевые миноры в нулевые, а ненулевые – в ненулевые. Матрица, полученная в результате, не равна исходной, но имеет тот же ранг. Пример. Найдем ранг матрицы . Теоретически ранг этой матрицы может принимать значения от 1 до 4, так как из элементов матрицы можно создать миноры по 4-й порядок включительно. Но вместо того, чтобы вычислять все возможные миноры 4-го, 3-го и т.д. порядка, применим к матрице А эквивалентные преобразования. Вначале добьемся того, чтобы в первом столбце все элементы, кроме первого, равнялись 0. Для этого запишем вместо второй строки ее сумму с первой, а вместо третьей – разность третьей и удвоенной первой:
. Затем из третьей строки вычтем вторую, а к четвертой прибавим вторую: . После вычеркивания нулевых строк получим матрицу размерности для которой максимальный порядок миноров, а, следовательно, и максимально возможное значение ранга равно 2: . Ее минор следовательно,
|