Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Найти точки разрыва функции, если они существуют;





Найти скачок функции в каждой точке разрыва;

Сделать схематический чертеж.

Решение. Функция непрерывна для , функция непрерывна в каждой точке из , функция непрерывна в каждой точке интервала .

Точки, в которых функция может иметь разрыв, это точки и , где функция меняет свое аналитическое выражение.

Исследуем точку .

, , . Таким образом, точка есть точка непрерывности функции .

Исследуем точку .

, , . Таким образом, односторонние пределы существуют, конечны, но не равны между собой. По определению, исследуемая точка – точка разрыва первого рода. Величина скачка функции в точке разрыва равен .

Сделаем схематический чертеж

Рис. 2


Контрольная работа №4.

Вариант 1

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 

Контрольная работа №4.

Вариант 2

 

1. Вычислить пределы функций.

а) ;

б) ; ;

в) ;

г) ;

д) ;

е) ; .

 

2. Дана функция и два значения аргумента .

Требуется.

1)Найти значение функции при стремлении аргумента к каждому из данных значений ;

2) Определить, является ли функция непрерывной или разрывной при данных значениях ;

3) Сделать схематический чертеж в окрестности точек и .

, .

 

3. Для кусочно-заданной функции .

Требуется.

1) Найти точки разрыва функции, если они существуют;

2) Найти скачок функции в каждой точке разрыва;

3) Сделать схематический чертеж.

 

 







Дата добавления: 2015-09-18; просмотров: 2431. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия