Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Коллоидная система клеток.




Коллоидно-химическая физиология человека.

Глобальная роль коллоидов в естествознании заключается в том, что они являются основными компонентами таких биологических образований как живые организмы. Все вещества организма человека представляют собой коллоидные системы.

Коллоиды поступают в организм в виде пищевых веществ и в процессе пищеварения превращаются в специфические, характерные для данного организма коллоиды.

Коллоидно-химическая физиология человека – это раздел науки, изучающий функционирование систем организма человека, образующих коллоидные соединения.

Из 10 функций организма, выделенных в отдельные системы, каковыми являются пищеварительная, сердечно-сосудистая, дыхательная, нервная, иммунная, эндокринная, мочеполовая, крови, печени, почек, выделим те, которые представляют из себя коллоидные системы.

Можно смело сказать, что весь человек – это ходячий коллоид, а все органы и системы организма дисперсная система в их связи с поверхностными явлениями.

Кости – это коллаген, насыщенный кальцием и фосфором, мигрирующими в присутствии витамина Д.

Кровь – это дисперсная система, в которой ферментные элементы эритроциты, тромбоциты, лейкоциты являются фазой, а плазма – дисперсной средой.

Из коллоидов, богатых белками соединительной ткани (аминокислоты пролин и глицин), состоят кожа, мышцы, ногти, волосы, кровеносные сосуды, легкие, весь желудочно-кишечный тракт и многое другое, без чего немыслима сама жизнь.

Все человеческое тело – это мир частиц, находящихся в постоянном движении строго по определенным правилам, подчиняющимся физиологии человека.

Коллоидные системы организмов обладают рядом биологических свойств, характеризующих то или иное коллоидное состояние:

Коллоидная система клеток.

С точки зрения коллоидно-химической физиологии человека его организм представляет собой сложный комплекс коллоидных систем в их постоянном динамическом взаимодействии. Мельчайшей структурно-функциональной единицей организма является клетка. Уже сама клетка представляет собой сложный комплекс коллоидных образований, основными из которых являются клеточные мембраны, гиалоплазма, ядро, ЭПР (эндо плазматический ретикулум), рибосомы, лизосомы, комплекс Гольджи и др.

Мембраны:многослойные комплексы, включающие билипидный слой, стабилизированный белковыми молекулами, гидрофобные концы которых обращены в сторону молекул липидов, а гидрофильные – в сторону цитоплазмы и наружу, в сторону межклеточного вещества. В силу водородных связей последние притягивают молекулы воды, придавая мембране стабильность и определенную степень гидрофильности. Коллоидные свойства мембран обеспечивают барьерную, метаболическую, разделительную, каркасную, защитную поддержания тургора в растительных клетках, транспортную, контактную (плазмодесмы, десмосомы), ферментативную и другие функции мембран. Мембраны принимают участие в образовании мембранных клеточных органелл (ядра, митохондрии, лизосомы и др.). Одной из важнейших функций мембран является их участие в лиганд-рецепторном взаимодействии (гликокаликс), обеспечивающем «узнавание» и распознавание чужеродной антигенной информации и др.

Гиалоплазма: представляет собойсовокупность лиофильных и лиофобных коллоидов со свойствами золей, гелейи эмульсий, участие в формировании которых принимают белки, нуклеиновые кислоты (РНК), соли металлов, липиды и другие вещества. Крупные конгломераты веществ, находящихся в коллоидном состоянии, обозначаются как клеточные включения (например, жировые). Для гиалоплазмы характерны переходы из состояния золя в гель при определенных условиях. Многообразие коллоидов гиалоплазмы и их взаимных переходов создает условия для биохимических процессов (в том числе поддержание осмотического давления), происходящих в цитоплазме клеток и формирует цитоскелет клетки (коллоидно-белковая система, пронизывающая клетку). Цитоскелет обеспечивает движение клеток, цитоплазмы, органелл, транспорт веществ и формирует каркас клетки. Гиалоплазма и ее коллоиды объединяют клетку в единое целое.

Ядро:коллоидная среда ядра обеспечивает процессы репликации ДНК и биосинтеза белка – работу информационных и транспортных РНК (диффузный и конденсированный хроматин), процессы сборки белковых молекул на и-РНК и формирование структур белковых молекул. Процесс репликации клеточной ДНК во время митоза возможен только в определенной динамически меняющейся среде, обеспечиваемой свойствами коллоидов.

ЭПР:также объединяет клетку в единое целое (контакт всех органелл), участвует в синтезе белковых, липидных коллоидов, их накоплении, транспортировке, а также детоксикации ядовитых веществ (гепатоциты).

Ткани организма как коллоидные системы

Кровь

Кровь является типичными примером ткани организма, где одни коллоиды находятся внутри других. В.А.Исаев дает определение крови как дисперсной системе, в которой форменные элементы – эритроциты, тромбоциты, лейкоциты являются фазой, а плазма – дисперсной средой. Однако по определению максимальных размеров, которых могут достигать коллоидные частицы он составляет 10-7 м., тогда как размер тромбоцитов равен 0,5-0,75x10-6 м, эритроцитов: 7x10-6 м., а размеры лейкоцитов превышают размеры эритроцитов в несколько раз. Таким образом, форменные элементы не могут считаться дисперсной фазой коллоидной системы и сами представляют из себя коллоид в коллоиде. Тем неменее именно они обусловливают вязкость крови, которая в 5 раз превышает вязкость воды.

К настоящему времени наиболее изученными являются коллоидные системы плазмы крови. Практически все органические составляющие плазмы находятся в ней в коллоидном состоянии. Основной дисперсионной средой является вода, дисперсионная фаза представляет собой самые разнообразные по химическому составу и молекулярному строению вещества: от молекул аминокислот и олигопептидов до крупных белковых молекул (фибрин, альбумины, глобулины, ферменты, нуклеопротеиды, гормоны белковой природы, транспортные белки и др.), от молекул моно- и дисахаридов и жирных кислот до лецитинов, триглицеридов и липидных хиломикронов высокой и низкой плотности. Плазма крови содержит изобилие низкомолекулярных органических веществ, таких как мочевина, креатинин, холестерин, стероидные гормоны, витамины. В плазме находятся катионы электролитов калия, натрия, магния, кальция, анионы хлора, сульфата, фосфата, карбоната, а также полный спектр микроэлементов.

С точки зрения коллоидной химии плазма крови представляет собой сложную систему коллоидов. Белки представляют собой основную составляющую дисперсионной фазы. Обращая свои лиофобные группы (- CH2 , - СH3 и др.) в сторону нерастворимых в воде молекул липидов, стероидов и жирных кислот, а гидрофильные концы (-COOH, -NH2, -SH) – в сторону молекул воды и электролитов, белки являются основными стабилизаторами коллоидной системы плазмы крови. Обладая наряду с этим амфотерными свойствами, они являются основными переносчиками, транспортерами низкомолекулярных веществ в организме. Основными белками крови являются сывороточные альбумины и фибриноген. Именно эти соединения обеспечивают коллоидные свойства плазмы в т.ч. её вязкость и др.

В крови находится целый ряд белков, представляющих собой каскадные системы, обеспечивающие осуществление жизненно важных функций организма. Сюда относятся свёртывающая и противосвёртывающая системы крови (система фибринолиза), калликреин-кининовая система и система комплемента. Нарушение целостности тканей в результате травм, попадания в кровь чужеродных объектов (вирусы, бактерии) нарушают поверхностное натяжение и другие свойства этих коллоидных систем. Это приводит к активации фактора Хагемана, который запускает в действие первые три из названных систем. Активация системы свёртывания приводит к образованию на поверхности бактерий и вирусов, а также на повреждённых тканях нитей фибрина из фибриногена. Одновременно фактор Хагемана активирует плазмин из системы фибринолиза, который разрубает нити фибрина на фибринпептиды. Т.о. запускается каскад белков двух действующих в противоположном направлении систем, которые приходят в динамическое равновесие между собой. При этом растворённый в плазме в виде золя фибриноген ферментативным способом переходит в фибрин, представляющий собой гель и обратно, подобно тому как это происходит при изотермическом обратимом переходе золь в гель и обратно, что получило название тиксотропии. Явление тиксотропии ранее было описано вне живого организма (Г. Фрейндлих). Тиксотропные структуры возникают лишь при определённой концентрации коллоидных частиц и электролитов и относятся к коагуляционным структурам, образующимся при определённых условиях. В нашем примере такой переход осуществляется под действием ферментов свёртывающей и противосвёртывающей систем крови.

Активация фактором Хагемана калликреин-кининовой системы также приводит к последовательной, каскадной активации белков этой системы, расширению капилляров и повышению их проницаемости.

Система комплемента имеет колоссальное значение в сохранении иммунного гомеостаза и борьбе с чужеродными агентами (бактерии, вирусы, злокачественные клетки). Система состоит из 25 белков, которые активируются компонентом С3 и последовательно переходят в состояние золь-гель, присоединяясь к комплексу антиген-антитело.

Липиды находятся в плазме в виде эмульсий. Частицы дисперсной фазы липидных эмульсий получили название хиломикронов. Дисперсное состояние и величина хиломикронов напрямую зависят от участия в процессе их эмульгации белковых молекул. Белки способствуют эмульгированию липидов, находящихся в плазме, осуществляют их транспорт и как бы передают другим белкам при передаче через мембраны. Хиломикроны крови состоят из холестерина и жирных кислот, нейтральных липидов и фосфолипидов с присоединенными к ним молекулами белков. В клинической практике их называют липопротеидами высокой (ЛПВП) и низкой (ЛПНП) плотности. Определение их количественного содержания в крови пациентов имеет большое значение в диагностике гиперхолестеринемии и борьбы с ней.

При патологических состояниях в плазме крови могут оказаться вещества различной химической природы, которые в норме либо отсутствуют в ней, либо присутствуют в очень небольших количествах. Так, при заболеваниях, сопровождающихся нарушениями выделительной функции пораженных органов, в плазме крови резко изменяется содержание ряда ее компонентов: при желтухах резко возрастает содержание желчных кислот и продуктов распада гемоглобина, при уремии – продуктов катаболизма белков мочевины и креатинина, ионов калия; при различных инфекциях в ней появляются микробные токсины белковой или полисахахаридной природы, при химических отравлениях - чужеродные химические вещества. Изменения в белковом составе плазмы крови могут происходить при многих заболеваниях. Они бывают наиболее выражены при миеломной болезни и болезни Вальденстрема, при которых в крови в больших количествах обнаруживаются так называемые парапротеины - макроглоблины М типа белка Бенс Джонса, а также при коллагенозах и злокачественных новообразованиях, сопровождающихся гиперпродукцией иммуноглобулинов. Эти изменения нарушают биохимический состав и влияют на коллоидные свойства плазмы крови и те функции, которые функции, которые должны выполнять ее коллоидные компоненты. Так, например, нарушения в системах свертывания – противосвертывания крови сдвигает динамическое равновесие между ними в сторону преобладания процесса свертывания, что приводит к образованию тромбов в кровеносных сосудах. Это, в свою очередь, является патогенетической основой развития инфарктов миокарда, ишемических инсультов головного мозга и тромбозов сосудов любой локализации.

Лимфа

Подобно крови лимфа состоит из жидкой части и форменных элементов. Причем эритроцитов в ней находится очень незначительное количество.

Качественный состав жидкой части лимфы совершенно одинаков с составом плазмы крови, но в количественном отношении резко отличается. Лимфа содержит меньше плотных веществ, особенно мало в ней фибриногена и протромбина, Количество же минеральных веществ (особенно солей натрия) в лимфе больше чем в плазме крови. Лимфа является посредницей между кровью и каждой клеткой организма, осуществляя транспорт к клеткам питательных веществ и унося от них продукты жизнедеятельности. Лимфа, оттекающая от кишечника, содержит в больших количествах продукты пищеварения, которые она получает во время всасывания. Она носит название хилюса и представляет собой эмульсию, содержащую крупные хиломикроны эмульгированного жира. Точный состав лимфы не известен. Он очень подвержен индивидуальным колебаниям. На него влияют такие факторы как состояние иммунной системы, деятельность различных органов и систем, кровяное давление и др.


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2015-09-15; просмотров: 1770. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.013 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7