Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 3: ГЕНОМЫ ЭУКАРИОТ





Геном эукариот более сложен, чем у прокариот и включает нуклеотидные последовательности хромосом, ДНК митохондрий и пластид (1-10 % от общего генома, у дрожжей до 20%), ДНК плазмид у дрожжей, ДНК латентных и дефектных вирусов.

Ядро эукариот хорошо выражено, имеется ядерная мембрана, окружающая хромосомы. Хромосом много, они парные, состоят из гомологичных хроматид, каждая из которых представляет двухцепочечную молекулу ДНК (набор хромосом диплоидный). В составе хромосомы – 50 % ДНК и 50 % белков, которые представлены основными гистоновыми белками, входящими в состав нуклеосом, и кислыми белками, которые заполняют полость нуклеосом, разрыхляют ее и играют важную роль в распаде нуклеосом перед началом транскрипции и репликации.

В релаксированном состоянии хромосомы эукариот могут достигать нескольких сантиметров (у человека до 5 см в длину). Существуют несколько стадий конденсации хромосом, в результате чего хромосома компактизируется, накручивается на нуклеосомы и образует более сложные свернутые структуры.

Стадии компактизации (конденсации) хромосом. Акты конденсации и деконденсации хромосом сменяют друг друга в клеточном цикле: в интерфазе ДНК выглядит в виде вытянутых спутанных нитей и получила название - хроматин. В этом состоянии ДНК частично релаксирована, что облегчает прохождение процесса транскрипции и репликации. Для расхождения (сегрегации) хромосом в митозе очень важно, чтобы хромосомы были суперспирализованы – конденсированы. Для этого в начале профазы митоза ДНК начинает компактизоваться с помощью положительной и отрицательной суперспирализации, а также путем накручивания на нуклеосомы. Нуклеосомная нить ДНК напоминает бусы, в которых нить (суперспирализованная молекула ДНК) намотана на бусинки (нуклеосомы).

 

 

Рис. 3.1. Cтадии компактизации хроматина

Нуклеосома – октомер из 8 субъединиц белков-гистонов, включающая по 2 молекулы гистонов Н2А, Н2В, Н3, Н4. Диаметр нуклеосомы - 11 нм, высота - 5,7 нм. По краям от нуклеосом имеются свободные участки ДНК в 20-90 пар нуклеотидов – линкеры. Гистон Н1 не входит в состав нуклеосомы, а фиксирует петли линкеров, удерживая ДНК на нуклеосоме. Такое нуклеосомное строение хромосом характерно только для линейных хромосом эукариот.

В результате спирализации и накручивания на нуклеосомы хромосомы укорачиваются и превращаются в метафазные хромосомы (стадия метафазы), сокращаясь в длину в 10000 раз, а в диаметре – примерно в 700 раз. Это способствует нормальному расхождению (сегрегации) хромосом в анафазе митоза. Рентгеноструктурный анализ позволил выявить следующие стадии компактизации ДНК.

1-ая стадия - двухцепочечная спираль ДНК (диаметр – 2 нм), обычно в правозакрученной В-форме.

2-ая стадия – нуклеосомная нить (диаметр – 11нм). ДНК наматывается на частички нуклеосом, образуя на них 1,75 витка (146 пар нуклеотидов).

3-ая стадия – образование хроматиновой фибриллы (диаметр 30 нм). Нуклеосомы сближаются друг с другом, образуется зигзагообразная «лента», которая скручивается в соленоид – спираль с полостью внутри.

4-ая стадия – образование петлевых доменов (диаметр 300 нм) формируется путем формирования петель из нити соленоида.

5-ая стадия – образование метафазных хромосом, которые получили название «ламповых щеток» (диаметр 1400 нм).

 

Избыточность геномов эукариот. Только незначительная часть ДНК у эукариот представлена структурными и регуляторными генами, остальная часть генома представляет собой «эгоистичную» (сателлитную) ДНК, которая очевидно попала в геном эукариот путём интеграции вирусов и других мобильных генетических элементов. В геноме человека насчитывается 3,5 х 109 пар нуклеотидов. Геномы млекопитающих различаются, но имеют близкие значения молекулярной массы хромосом, достигающие сотен миллиардов Да. В соответствии с величиной генома у человека должно бы было быть 150000 и более генов, однако в 2003 г. американские ученые заявили о существовании 30000 генов, в последние годы предполагается наличие 75 тыс. генов, остальная часть геномной ДНК очевидно является “генетическим мусором”. Значительная часть генома представлена некодирующими последовательностями. У человека некодирующие последовательности составляют 80-85% (по другим данным – 92%), а у растений – до 90% и более, т.е. характерна избыточность генома.

 

В геноме эукариот выделяют следующие типы последовательностей ДНК:

 

1) многократно повторяющиеся последовательности, которых насчитывается более 105 повторов на геном. Чаще всего это блоки из 5-8 нуклеотидов, которые тандемно повторяются и образуют фрагменты в 150-500 пар нуклеотидов, например - (ААТАТ)30-100. Функция их до конца неизвестна, но предполагают, что они могут играть роль в регуляции работы генов – находятся в области центромер, теломер, интронов, транспозонов. Это последовательности: Alu, B1, B2, L1. Среди многократно повторяющихся последовательностей очень часто встречаются сайты рестрикции в составе палиндромов (см. дальше - тема «Репарации»). Сайты рестрикции могут быть теми горячими точками, куда встраиваются плазмиды, транспозоны, вирусные ДНК, трансгены.

2) умеренно повторяющиеся последовательности – встречаются на геном от 10 до105. К ним относятся последовательности, кодирующие гистоны, рибосомальные белки, р-РНК и т-РНК, IS-элементы, вставочные последовательности.

3) мультигенные семейства – это группы близких по структуре и функциям генов, которые «включаются» на разных этапах онтогенеза. Например b-цепь гемоглобина кодируется 7 генами, 2 из которых дефектные (псевдогены), остальные 5 включаются последовательно на разных этапах развития: в раннем эмбриогенезе, в плодном периоде (8-9 недель), в детском, юношеском и зрелом возрасте.

4) уникальные гены - специфические гены, которые кодируют синтез структурных и ферментных белков.

 

Структура генов эукариот. Гены эукариот имеют регуляторные элементы подобные прокариотам - промоторную и терминаторную зоны, между которыми располагается последовательность ДНК, непосредственно кодирующая белок. Регуляторные элементы генов очень важны, поскольку именно благодаря им гены «включаются» только тогда, когда есть необходимость в соответствующих белковых продуктах. Промоторная зона обеспечивает начало транскрипции и трансляции, а терминаторная зона – конец этих процессов.

В промоторах можна выделить следующие консервативные последовательности: ГЦ-мотив, ЦААТ, ТАТА, АГГАГ, инициирующий кодон АТГ (АУГ на РНК). Далее идет структурная часть гена, которая состоит из экзонов и интронов. За структурной частью гена следует зона терминатора, представленная терминирующим кодоном ТТА (ТАГ или ТГА) и терминатором. На рис. 3.1. представлены основные участки гена эукариот.

 

ГЦ-мотив ЦААТ   ТАТА   АГГАГ   АУГ   Структурная часть гена ТАА, ТАГ, ТГА   Терми-натор
Палин-дром Центр узнавания ДНК для РНК-по-лимеразы Центр связыва-ния с РНК-полиме-разой Центр связыва- ния с рибосо-мой Ини-ции- рую-щий кодон Уникальная последовательность нуклеотидов Терми-нирую-щий кодон Специ-фичес-кая по-следо-ватель-ность

Рис. 3.2. Тонкая структура гена эукариот

 

Обозначения и пояснения к рис. 3.2.

Функции основных регуляторных элементов гена

 

· ГЦ-мотив один из наиболее часто встречающихся регуляторных элементов гена. Представлен палиндромом ГГЦГГГ / ЦЦЦГЦЦ, встречается в генах общих функций, то есть тех, которые экспрессируются во всех клетках организма и играют важную роль в их жизнеобеспечении. Этот участок является, очевидно, оператором транскрипции. Присоединение к ГЦ-мотиву белка-регулятора SP1, увеличивает транскрипцию в 10-20 раз.

· ЦААТ – участок промотора гена, который, по всей видимости, распознается РНК- полимеразой перед началом транскрипции. Очевидно, этот участок выполняет ту же функцию, что у прокариот ТТГАЦА (блок Гилберта). ЦЦААТ встречается в тканеспецифичных генах, то есть тех, которые экспрессируются только в некоторых тканях и органах. Так, ген инсулина включается в основном только в клетках островков Лангерганса поджелудочной железы, ген альфа-фетопротеина - у взрослого человека только в клетках печени.

· блок Хогнеса - ТАТА (ТАТАААА или ТАТААТА), подобен блоку Прибнова (ТАТААТ) у прокариот, служит для присоединения РНК-полимеразы к ДНК в промоторной зоне, его положение в гене относительно нулевой точки начала транскрипции – (-30).

· центр связывания с рибосомой содержит редуцированную последовательность Шайна-Дальгарно АГГАГ (см. функции последовательности Шайна-Дальгарно АГГАГГ у прокариот, тема «Геномы прокариот»).

· инициирующий кодон представлен триплетом АТГ (АУГ – на РНК), транскрибируется в составе информационной РНК, с него начинается трансляция. При синтезе полипептида на рибосоме этому кодону соответствует аминокислота метионин. С метионина начинается синтез большинства белков.

· структурная часть гена – это последовательность ДНК, которая непосредственно кодирует сам белок. У эукариот, в отличие от прокариот, она не цельная, а состоит из экзонов (кодирующих участков) и интронов (вставочных некодирующих участков).

· терминирующий кодон - участок, который транскрибируется на и-РНК и обеспечивает окончание трансляции на рибосомах. На ДНК представлен нонсенс-кодонами - триплетами ТАА, ТАГ, ТГА, на РНК им соответствуют УАА, УАГ и УГА. Этим триплетам не соответствует ни одна из аминокислот, поэтому на них в рибосоме обрывается синтез полипептида.

· терминаторный участок очевидно представлен в каждом гене специфической нуклеотидной последовательностью.

 

В геноме эукариот обнаружили также специфические регуляторные последовательности, которые могут выступать в роли энхансеров – усилителей транскрипции, а также последовательности, которые выступают в роли сайленсеров – глушителей транскрипции. Они могут находиться на значительном удалении от гена, который регулируют, причем, одни и те же последовательности в одной клетке могут быть энхансерами, а в другой - сайленсерами. С их помощью регулируется экспрессия генов.

Обнаружены также регуляторные белки, способные связываться с промоторной зоной гена и обеспечивающие либо активацию, либо подавление транскрипции. Так, регуляторный белок SP1, связываясь с ГЦ-мотивом, может усиливать транскрипцию в 10-20 раз.

 

Устройство генов эукариот. Гены эукариотических организмов обладают следующими характеристиками:

- одиночные, т.е. в отличие от прокариот, не собраны в опероны;

- иногда олигомерные (представлены генами-кластерами);

- прерывистые, т.е. разделены на интроны и экзоны;

- перекрывающиеся, т.е. в пределах одного генного участка ДНК может функционировать несколько рамок считывания.

Генетический анализ у эукариот, в частности у их простейших представителей – дрожжей и нейроспоры, показал, что гены, контролирующие различные этапы одного и того же пути метаболизма, как правило, хаотично разбросаны по геному и обычно не образуют скоплений подобно оперонам бактерий. Однако было найдено несколько исключений, а именно: компактный участок ДНК у грибов контролирует 3 реакции в биосинтезе гистидина. Сходная ситуация обнаружена при изучении генетического контроля биосинтеза ароматических аминокислот (триптофана, тирозина, фенилаланина), а также – жирных кислот. У исследователей создалось впечатление, что они имеют дело с опероноподобной структурой, кодирующей мультиэнзимный комплекс. В действительности же оказалось (при использовании мутационного анализа), что у грибов все 5 этапов биосинтеза ароматических аминокислот контролирует 1 ген, продуктом которого является длинная полипептидная цепь массой 150 000 Д. Это не оперон, а ген-кластер (cluster-gene). Такие гены-кластеры довольно часто встречаются у эукариот. В качестве примеров можно привести следующие гены-кластеры:

· his 4 – ген-кластер для биосинтеза гистидина у дрожжей-сахаромицетов, кодирует единый полипептид с тремя ферментативными активностями;

· arom 1 – ген-кластер для биосинтеза ароматических аминокислот у нейроспоры, кодирует единый полипептид с пятью ферментативными активностями;

· fas 1 – первый ген-кластер для биосинтеза жирных кислот у дрожжей-сахаромицетов, кодирует полипептид с тремя ферментативными активностями

· fas 2 – второй ген-кластер для биосинтеза жирных кислот у дрожжей-сахаромицетов, кодирует единый полипептид с пятью ферментативными активностями.

Существование генов-кластеров является примером молекулярной олигомеризации. Очевидно, считывание с гена-кластера информации сразу о нескольких ферментах метаболического пути является для клетки “экономически” более выгодным, как и в оперонах прокариот. В отличие от оперона бактерий, в генах-кластерах в результате транскрипци и последующей трансляции на рибосомах синтезируется одна длинная молекула полипептида, в которой отдельные домены после пространственной укладки в третичную структуру начинают выполнять функции отдельных ферментов. В оперонах прокариот отдельные гены оперона обычно транслируются в самостоятельные белковые продукты.

Большинство же генов эукариот – одиночные, т. е в ходе эволюции эукариот происходила автономизация генов. По-видимому, это создает благоприятные условия для раздельной, а значит, и более тонкой регуляции функций отдельных генов. Напомним, что у прокариот регуляции зачастую подвержены сразу все гены оперона, за исключением аутогенного котроля, когда ген-регулятор находится среди структурных генов внутри оперона и позволяет регулировать оперон отдельными блоками.

Гены эукариот прерывистые, а именно, состоят из кодирующих участков – экзонов, и не кодирующих – интронов. Такую структуру генов называют интрон-экзонной или мозаичной структурой. Длина экзонов достигает 1000 пар нуклеотидов, а интронов – обычно 5000-20000 пар нуклеотидов. Структурная часть гена может включать 2-3 (иногда более) экзонов, разделенных длинными интронами. И хотя интронов обычно бывает немного, число их у разных видов и в разных генах может колебаться от 0 (в генах гистонов) до 51 (в структурном гене коллагена). Экзонов всегда больше, чем интронов, но на долю интронов приходится в 5-7 раз больше нуклеотидных пар, чем на долю экзонов, поскольку интроны длиннее. В зависимости от количества экзонов и интронов, а также от их длины зависит длина гена эукариот. У разных организмов она может сильно варьировать. Так, у дрозофилы средняя длина гена составляет 2 тис. п. н., а длина гена фиброина шелка у шелковичного червя достигает 16 тис. п.н.

Существование интронов в структурной части гена создает определенные трудности для реализации генетической информации, так как в транскрибируемой и-РНК оказываются «лишние» участки ДНК, которые впоследствии не должны транслироваться на рибосомах. Как же в клетке эукариот решается эта проблема? Решение было найдено американским ученым Филиппом Шарпом из Массачусетского технологического института, который открыл явление сплайсинга (от англ. to splace – сшивать без узлов).

Механизм сплайсинга. Сначала в ядре с участка хромосомы (гена) транскрибируется полностью последовательность ДНК с формированием про-и-РНК – незрелой, более длинной РНК, которая содержит как экзоны, так и интроны. Далее, когда про-и-РНК направляется из ядра в цитоплазму, при прохождении ядерной мембраны происходит сплайсинг -созревание про-и-РНК, в результате которого вырезаются интроны, а экзоны сшиваются между собой с помощью фермента, получившего название матураза. Для осуществления сплайсинга важную роль играют особые sРНК (длиной до 160 нуклеотидов), которые стягивают между собой концы интронов, что способствует их вырезанию и последующему сшиванию экзонов. В цитоплазму на рибосомы для трансляции поступает уже зрелая и-РНК, в которой нет интронов.

Интроны не всегда являются некодирующими участками. Так, у дрожжей в генах митохондрий обнаружены интроны, кодирующие синтез фермента матуразы, который участвует в вырезании интронов. В некоторых генах дрожжей обнаружены интроны, кодирующие цитохром В и т.д.

Сплайсинг осуществляется белковыми комплексами, получившими название сплайсосомы. В состав сплайсосом, помимо уже названных матураз и sРНК, входят еще белки, придающие про-и-РНК нужную конформацию. Кроме того, сплайсосома связана с ферментами, осуществляющими полиаденилирование 3/-конца и-РНК.

Типы сплайсинга: простой; альтернативный; транссплайсинг; аутосплайсинг.

Простой сплайсинг характерендля простых генов, последовательность экзонов которых предназначена для синтеза только одного белка. В таких генах экзоны занимают на ДНК всегда фиксированное положение и удаление интронов всегда ведется в четко обозначенных точках.

Альтернативный сплайсинг характерен для генных участков, на которых закодированы сразу несколько белков. При этом одни и те же участки выступают то экзонами, то интронами. Так на одном участке ДНК кодируется нейропептид гипофиза и гормон паращитовидной железы. В зависимости от вырезания тех или иных участков ДНК образуется и-РНК, кодирующая тот или иной белок. Альтернативный сплайсинг имеет место при синтезе иммуноглобулинов (антител) и при синтезе антигенов тканевой совместимости (МНС).

Транссплайсинг п роисходит, если в одну молекулу и-РНК объединяются экзоны из разных генов. Характерен для синтеза компонентов цитоскелета клетки.

Аутосплайсинг обнаружен впервые в макронуклеусе инфузорий, а позже у бактерий, дрозофил и других эукариот. Аутосплайсинг – самонарезание про-и-РНК без участия матураз и других ферментов. РНК, которая сама вырезает из себя интроны, получила название рибозим. Аутосплайсинг свидетельствует о том, что первой молекулой, несущей генетическую информацию, в эволюции была РНК. Она выполняла и генетическую и каталитическую функции, переданные позднее ДНК и белкам соответственно.

Как же в структуре генов образовались некодирующие интроны? Существует гипотеза, что еще на заре эволюции эукариот, они заражались вирусами и за счет интеграции в геном вирусной ДНК в хромосомах появилась избыточная сателлитная (эгоистическая) ДНК. Она присутствует не только в интронных последовательностях генов, но и разбросана по всей длине хромосом в виде огромных вставок некодирующих последовательностей.

У эукариот, так же как и у вирусов, встречаются перекрывающиеся гены, а именно на одном и том же участке ДНК с разных точек (и/или на разных цепях) может начинаться транскрипция с образованием разных и-РНК, кодирующих разные полипептиды.

Репликация у эукариот множественная, в каждой хромосоме существует 20-100 сайтов начала репликации и соответствующее число репликонов. Репликация в них может идти не одномоментно, однако деление клетки не начинается, пока не реплицированы все хромосомы на всем их протяжении. Подробно репликация рассмотрена в отдельной лекции (см. выше).

Транскрипция и трансляция у эукариот разобщены из-за наличия ядерной мембраны, а именно, транскрипция осуществляется в ядре, а образующаяся при этом информационная РНК должна транспортироваться из ядра в цитоплазму для последующего синтеза белка (трансляции) на рибосомах. Уже говорилось о том, что при преодолении ядерной мембраны происходит сплайсинг, т.е. созревание и-РНК. На все эти процессы необходимо время, поэтому от момента инициации транскрипции до появления белкового продукта в процессе трансляции проходит 6-24 часа. Для сравнения: у прокариот это время составляет 2-3 минуты.

 







Дата добавления: 2015-08-12; просмотров: 1991. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия