Студопедия — Тема 4: Репарация
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 4: Репарация






Хотя ДНК является достаточно стабильной молекулой благодаря «сокрытию» реакционноспособных групп внутри двухцепочечной молекулы и вследствие стойкости дезоксирибозы по сравнению с рибозой, все же она подвергается изменениям под воздействием следующих факторов:

спонтанные мутации (частота 10-4–10-11), происходящие под воздействием тепловой энергии, активных метаболитов, при ошибках в работе ДНК-полимераз;

индуцированные мутации под воздействием УФЛ, ионизирующей радиации, многочисленных химических мутагенов;

рекомбинативные процессы, осуществляемые при участии мобильных генетических элементов - МГЭ (плазмид, транспозонов, вирусов).

Важную роль в исправлении повреждений ДНК, вызванных мутациями и рекомбинациями, играет репаративная система клетки, включающая целый ряд разнообразных ферментов. Репаративные ферменты могут действовать точечно, исправляя локальные мутации (прямая репарация, фотореактивация), а могут и удалять достаточно крупные участки поврежденной ДНК (эксцизионная репарация, темновая репарация). Образовавшиеся при этом делеции застраиваются с использованием неповрежденной матричной цепи при участии репликативных ферментов. В случае особо мощного воздействия мутагенов включается SOS-индуцированная репарация, которая призвана сохранить ДНК любой ценой, даже допуская ошибочное встраивание нуклеотидов.

 

Классификация систем репарации

 

І. Система модификации и рестрикции у бактерий

ІІ. Репликационная репарация – коррекция ДНК с помощью ДНК-полимераз и др. ферментов по ходу репликации.

ІІІ. Пострепликационная репарация (в основном рекомбинационная) – исправления повреждений в уже синтезированной ДНК.

Рассмотрим эти типы репараций.

І. МR-система (система рестрикции-модификации)

МR-система у бактерий представлена двумя типами ферментов: метилазами и рестриктазами и направлена на уничтожение чужеродной ДНК, проникающей в клетку извне или же на ДНК, образующуюся в результате спонтанных внутренних мутаций.

Метилазы метят метильными группами аденин и цитозин в определенных участках собственной ДНК – «горячих точках» рестрикции. Горячими точками рестрикции являются обычно небольшие палиндромы – участки ДНК, в которых относительно условной точки симметрии в транс-положении имеются инвертированные повторы, т.е. одинаковые, но повернутые относительно друг друга на 1800, например:

А А Г Г Ц А Т Г Ц Ц Т Т

Т Т Ц Ц Г Т А Ц Г Г А А

 

Рис. 4.1. Пример палиндрома (стрелкой обозначена условная ось симметрии, относительно которой цепи повернуты на 180О в транс-положении)

 

Рестриктазы в этих же сайтах («горячих точках» рестрикции) могут разрезать ДНК, если она не метилирована. Эта система защиты направлена прежде всего на проникающую в клетку чужеродную ДНК (в основном фаговую). Метилазная и рестриктазная активности могут принадлежать одному белку, а могут – двум разным белкам. Метилирование «своей» ДНК в специфических сайтах предотвращает ее от разрушения собственными рестриктазами. Действием метилаз можно объяснить появление в ДНК минорных азотистых оснований – 5-метилцитозина и 6-метиламинопурина. Они появляются сразу после репликации.

Сейчас известно более 400 микробных рестриктаз, которые распознают приблизительно 100 сайтов рестрикции. Рестриктазы могут разрезать ДНК с образованием «тупых» концов, т.е. с образованием равных фрагментов ДНК в месте гидролиза. Другие рестриктазы могут образовывать «липкие» концы, т.е. разрезают сайт рестрикции со смещением и образованием выступа в одной цепи разрыва и пробела – в другой цепи. Образованные липкие концы комплементарны друг другу. Это свойство рестриктаз широко используется в генной инженерии для встраивания генов в векторы – плазмиды, транспозоны, вирусы и др.

 







Дата добавления: 2015-08-12; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия