Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры





Задача 1. Сколько молекул кислорода находится в объеме 1 л при температуре 0° С и давление 133,3 Па?

Решение

Воспользуемся формулой, выражающей давление газа через концентрацию молекул

= .

Откуда искомое число частиц

.

После подстановки значений, получим:

Задача 2. В баллоне объемом 10 л находится гелий под давлением p1=1 MПа и температуре T1=300 К. После того как из баллона было взято m=10 г гелия, температура в баллоне понизилась до T2=290 К. Определить давление p2 гелия, оставшегося в баллоне.

Решение

Выразим искомое давление из уравнения Менделеева-Клапейрона, применив его к конечному состоянию газа:

.

Массу гелия в баллоне в конечном состоянии m2 выразим через массу m1, соответствующую начальному состоянию, и массу m гелия, взятого из баллона

.

Массу m1 можно выразить из уравнения Менделеева-Клапейрона, применив его к начальному состоянию:

.

С учетом этого выражения масса m2

.

Окончательно для искомого уравнения имеем:

,

или

.

После подстановки значений, получим:

Задача 3. Определить давление и молекулярную массу смеси газов, состоящей из 10 г кислорода (О2) и 10 г азота (N2), которые занимают объем 20 л при температуре 150° С.

Решение

По закону Дальтона давление смеси газа

,

где парциальное давление pi каждого газа можно выразить из уравнения Менделеева-Клапейрона

.

 

Тогда давление смеси

.

После подстановки значений, получим:

Молярную массу смеси выразим через массу и количество вещества смеси газа

После подстановки значений, получим:

 

 

Задача 5. Давление газа равно 104 Па, а средняя квадратичная скорость равна 500 м/c. Найти плотность r этого газа.

Решение

Основное уравнение молекулярно-кинетической теории может быть представлено следующим образом:

.

Следовательно,

кг/м3.

Задача 4. Какая часть молекул воздуха (M=29·10-3 кг/моль) при температуре 17°С обладает скоростями, отличающимися не более чем на 0,5 м/с от скорости u = uВ?

 

Решение

Наиболее вероятная скорость

.

Относительная скорость и относительная величина интервала

; = 1,2×10-3.

Поскольку можно считать, что ,

и согласно распределению Максвелла

.

Задача 6. Найти отношение числа молекул газа, скорости которых лежат в интервале от u до (u+ ) при температуре Т1 к числу молекул, скорости которых лежат в том же интервале при температуре Т2 = 2Т1. Считать, что , .

Решение

Согласно распределению Максвелла, учитывая, что , число молекул газа, скорости которых лежат в интервале от u до (u+ ) в первом и втором случаях:

, ,

где

, ;

, .

Найдем отношение числа молекул газа:

.

Задача 7. На какой высоте h над уровнем моря плотность воздуха уменьшается в 2 раза? Температура воздуха 0° С. Считать, что температура воздуха Т, молярная масса M и ускорение силы тяжести g не зависят от h.

Решение

Исходя из определения плотности и с учетом уравнения Менделеева-Клапейрона имеем

.

Давление воздуха на высоте h в соответствиис барометрической формулой равно

.

Таким образом, плотность воздуха на высоте h дается выражением

.

После логарифмирования и преобразования данного выражения, получим окончательно

=5,4 км.

Задача 8. Определить массу m газа, заключенного в вертикальном цилиндрическом сосуде. Площадь основания сосуда S, высота h. Давление газа на уровне нижнего основания цилиндра p0, температура газа Т, молярная масса газа M. Считать, что Т и g не зависит от h.

Решение

Поскольку давление, а, следовательно, и плотность газа, заключенного в вертикальном сосуде, зависит от высоты, то массу газа необходимо находить путем интегрирования выражения

.

С учетом того, что плотность газа уменьшается с высотой согласно закону , получим

.

Приведем данный интеграл к табличному виду, используя метод замены переменной:

, где .

Откуда

.







Дата добавления: 2015-08-12; просмотров: 3108. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия