Параметры пьезоматериалов (п.м.)
где e0=8,85·10-12 Ф/м - диэлектрическая постоянная вакуума; 2) величиной Большое значение для мощных излучателей звука имеют предельно допустимое механическое напряжение, которое зависит от механической прочности материала, стабильность свойств относительно разогрева, а также нелинейность свойств, при которой происходит перекачка энергии в высшие гармоники и уменьшение эффективности (КПД) на основной частоте (рис. 7 и 8). Примечание. Значения всех констант даны для температуры 16-20° С. Цифры в скобках у монокристаллов определяют индексы соответствующих тензорных характеристик, например означает с11, e11, d 11, (36/2)-1/2 d 36 и т. д. Для пьезокерамики верхние значения (над чертой) для с и S имеют индексы (11), а для d и К-индекс (31); нижние значения (под чертой) констант имеют индекс (33). Величины d31<0; d 33>0. Значения tgd для кристаллов даны при напряжённости поля E<0,05 кВ/см; для пьезокерамики tgd даётся в интервале 0,05<Е<2 кВ/см; d v-объёмный пьезомодуль.
Рис. 7. Зависимость тангенса диэлектрических потерь
Рис. 8. Зависимость механической добротности Свойства пьезокерамики, особенно у составов типа ЦТС, с изменением темп-ры варьируют незначительно. Изменение резонансной частоты в интервале темп-р 30-40°С достигает 1,5-2,0% (у сегнетовой соли до 40%), пьезомодуля и диэлектрич. проницаемости - 10-20%. Зависимость параметров пьезокерамики от всестороннего сжатия слаба, однако при действии одностороннего сжатия (108 Н/м2) вдоль оси спонтанной поляризации изменение (уменьшение) пьезомодулей может достигать 30-70%, а увеличение диэлектрич. проницаемости от 5 до 60%. Кристаллы ниобата лития, танталата лития, германа-та свинца применяются в УЗ-технике в области СВЧ-диапазона (вплоть до ГГц) и в акустоэлектронике благодаря чрезвычайно малому затуханию в них акустич. волн, как объёмных и сдвиговых, так и поверхностных. Они используются в акустооптике. Для пьезополу-проводниковых преобразователей в линиях задержки и др. устройствах акустоэлектроники используются сульфид кадмия, оксид цинка, арсенид галлия и др. пьезополупроводники. К пьезополимерам относят как поливинилиденфторид (ПВДФ) и сополимеры на его основе, так и пьезоэлек-трич. композиционные материалы (пьезокомпозиты). Материалы на основе ПВДФ выпускаются в виде плёнок толщиной от 10 мкм до 1 мм и более, металлизован-ных и поляризованных по толщине. Пьезокомпозит может иметь структуру в виде пористого каркаса пьезокерамики, пропитанного полимером, или чаще в виде частиц пьезокерамики (порошка, тонких стерженьков), распределённых в полимере. П. м. на основе полимеров обладают высокой пьезоэлектрич. эффективностью, эластичностью и рядом технол. преимуществ. Пьезоэффект в полимерах возникает в результате неоднородного распределения зарядов, при статич. электризации, полимеризации и др. (тип I), а также вследствие ориентации диполей в полярных полимерах при механич. деформировании (тип II), в биополимерах (тип III), при поляризации в электрич. поле (тип IV, электреты), в результате спонтанной поляризации в таких высокополярных поликристаллич. полимерах (тип V), как, напр., ПВДФ, полиамиды, сегнетоэлектрич. стёкла и др. В полимерах типа I и II пьезоэлектрич. коэф. d обычно невелики [ d33 = (0,1-0,5)·10-12 Кл·Н-1]; в материалах типа III и IV они достигают более высоких значений [до d33 = (1- 2)·10-12 Кл·Н-1]; в материалах типа V -[до d33 = 40·10-12 Кл·Н-1]. Среди пьезокомпозитов наиб. распространены материалы на основе порошка титаната свинца, распределённого в полимере, из-за значит. величины объёмного пьезомодуля (d V = 30·10-12 Кл/Н) при достаточно простой технологии изготовления.
|