Сетевые операционные системы 15 страница
Файловая система AFS
AFS была разработана в университете Карнеги-Меллона и названа в честь спонсоров-основателей университета Andrew Carnegie и Andrew Mellon. Эта система, созданная для студентов университета, не является прозрачной системой, в которой все ресурсы динамически назначаются всем пользователям при возникновении потребностей. Несмотря на это, файловая система была спроектирована так, чтобы обеспечить прозрачность доступа каждому пользователю, независимо от того, какой рабочей станцией он пользуется.
Особенностью этой файловой системы является возможность работы с большим (до 10 000) числом рабочих станций.
Конфигурация системы состоит из кластеров, каждый из которых включает файловый сервер и несколько десятков рабочих станций. Идея состоит в том, чтобы распределить большую часть трафика в пределах отдельных кластеров и тем самым уменьшить загрузку позвоночника сети.
Так как студенты могли входить в систему и в университете, и в общежитии, то иногда они оказывались далеко от сервера, который содержал их файлы. Несмотря на это, пользователь должен иметь возможность работать на произвольно выбранной рабочей станции, как на своем персональном компьютере.
Физически нет разницы между машиной клиента и сервера, и все они выполняют одну и ту же ОС BSD UNIX с его большим монолитным ядром. Однако над ядром выполняются совершенно различные программы серверов и клиентов. На клиент-машинах выполняются менеджеры окон, редакторы и другое стандартное программное обеспечение системы UNIX. Каждый клиент имеет также часть кода - venus, которая управляет интерфейсом между клиентом и серверной частью системы, называемой vice. Вначале venus выполнялся в пользовательском режиме, но позже он был перемещен в ядро для повышения производительности. Venus работает также в качестве менеджера кэша. В дальнейшем мы будем называть venus просто клиентом, а vice - сервером.
Пространство имен, видимое пользовательскими программами, выглядит как традиционное дерево в ОС UNIX с добавленным к нему каталогом /cmu. Содержимое каталога /cmu поддерживается AFS посредством vice-серверов и идентично на всех рабочих станциях. Другие каталоги и файлы исключительно локальны и не разделяются. Возможности разделяемой файловой системы предоставляются путем монтирования к каталогу /cmu. Файл, который UNIX ожидает найти в верхней части файловой системы, может быть перемещен символьной связью из разделяемой файловой системы (например, /bin/sh может быть символьно связан с /cmu/bin/sh).
В основе AFS лежит стремление делать для каждого пользователя как можно больше на его рабочей станции и как можно меньше взаимодействовать с остальной системой. При открытии удаленного файла весь файл (или его значительная часть, если он очень большой) загружается на диск рабочей станции и кэшируется там, причем процесс, который сделал вызов OPEN, даже не знает об этом. По этой причине каждая рабочая станция имеет диск.
После загрузки файла на локальный диск он помещается в локальный каталог /cash, так что он выглядит для ОС как нормальный файл. Дескриптор файла, возвращаемый системным вызовом OPEN, соответствует именно этому файлу, так что вызовы READ и WRITE работают обычным путем, без участия клиента и сервера. Другими словами, хотя системный вызов OPEN значительно изменен, реализация READ и WRITE не изменилась.
Безопасность - это главный вопрос в системе с 10 000 пользователей. Так как пользователи вольны перегружать свои рабочие станции, когда захотят и могут выполнять на них модифицированные версии ОС, то главный принцип сервера - не доверять клиентским рабочим станциям. Все сообщения между рабочими станциями шифруются на уровне аппаратуры.
Защита выполнена несколько необычным путем. Каталоги защищаются списками прав доступа (ACL), но файлы имеют обычные биты RWX UNIX'а. Разработчики системы предпочитают механизм ACL, но так как многие UNIX-программы работают с битами RWX, то они оставлены для совместимости. Списки прав доступа могут содержать и отсутствие прав, так что можно, например, потребовать, чтобы доступ к файлу был разрешен для всех, кроме одного конкретного человека.
Диски рабочих станций используются только для временных файлов, кэширования удаленных файлов и хранения страниц виртуальной памяти, но не для постоянной информации. Это существенно упрощает управление системой, в этом случае нужно управлять и архивировать только файлы серверов, а рабочие станции не требуют никаких забот. Концептуально они могут начинать каждый рабочий день с чистого листа.
AFS сконструирована для расширения до масштабов национальной файловой системы. Система на самом деле представляет собой отдельную ячейку (cell). Каждая ячейка - это административная единица, такая как отдел или компания. Ячейки могут быть соединены друг с другом с помощью монтирования, так что дерево разделяемых файлов может покрывать многие города.
В дополнение к концепциям файла, каталога и ячейки AFS поддерживает еще одно важное понятие - том. Том - это собрание каталогов, которые управляются вместе. Обычно все файлы какого-либо пользователя составляют том. Таким образом поддерево, входящее в /usr/john, может быть одним томом, поддерево, входящее в /usr/mary, может быть другим томом. Фактически, каждая ячейка представляет собой ничто иное, как набор томов, соединенных вместе некоторым, подходящим с точки зрения монтирования, образом. Большинство томов содержат пользовательские файлы, некоторые другие используются для двоичных выполняемых файлов и другой системной информации. Тома могут иметь признак "только для чтения".
Семантика, предлагаемая AFS, близка к сессионной семантике. Когда файл открывается, он берется у подходящего сервера и помещается в каталог /cash на локальном диске на рабочей станции. Все операции чтения-записи работают с кэшированной копией. При закрытии файла он выгружается назад на сервер. Следствием этой модели является то, что когда процесс открывает уже открытый файл, то версия, которую он видит, зависит от того, где находится процесс. Процесс на той же рабочей станции видит копию в каталоге /cash, при этом выполняется вся семантика UNIX.
В то же время процесс на другой рабочей станции продолжает видеть исходную версию файла на сервере. Только после того, как файл будет закрыт и отослан обратно на сервер, последующая операция открытия увидит новую версию. После того, как файл закрывается, он остается в кэше, на случай, если он скоро будет снова открыт. Как мы видели ранее, повторное открытие файла, который находится в кэше, порождает проблему: "Как клиент узнает, последняя ли это версия файла?" В первой версии AFS эта проблема решалась прямым запросом клиента к серверу. К сожалению эти запросы создавали большой трафик и впоследствии алгоритм был изменен. В новом алгоритме, когда клиент загружает файл в свой кэш, то он сообщает серверу, что его интересуют все операции открытия этого файла процессами на других рабочих станциях. В этом случае сервер создает таблицу, отмечающую местонахождение этого кэшированного файла. Если другой процесс где-либо в системе открывает этот файл, то сервер посылает сообщение клиенту, чтобы тот отметил этот вход кэша как недействительный. Если этот файл в настоящее время используется, то использующие его процессы могут продолжать делать это. Однако, если другой процесс пытается открыть его заново, то клиент должен свериться с сервером, действителен ли все еще этот вход в кэше, а если нет, то получить новую копию. Если рабочая станция терпит крах, а затем перезагружается, то все файлы в кэше отмечаются как недействительные.
Блокировка файла поддерживается с помощью системного вызова UNIX FLOCK. Если блокировка не снимается в течение 30 минут, то она снимается по тайм-ауту. Тома, предназначенные только для чтения, такие как системные двоичные файлы, реплицируются, а пользовательские файлы - нет.
Хотя прикладные программы видят традиционное пространство имен UNIX, внутренняя организация сервера и клиента использует совершенно другую схему имен. Они используют двухуровневую схему именования, при которой каталог содержит структуры, называемые fids (file identifiers), вместо традиционных номеров i-узлов.
Fid состоит из трех 32-х битных полей. Первое поле - это номер тома, который однозначно определяет отдельный том в системе. Это поле говорит, на каком томе находится файл. Второе поле называется vnode, это индекс в системных таблицах определенного тома. Оно определяет конкретный файл в данном томе. Третье поле - это уникальный номер, который используется для обеспечения повторного использования vnode. Если файл удаляется, то его vnode может быть повторно использован, но с другим значением уникального номера, для того, чтобы обнаружить и отвергнуть все старые fids.
Протокол между сервером и клиентом использует fid для идентификации файла. Когда fid поступает в сервер, по значению номера тома производится поиск в базе данных, управляемой всеми серверами, чтобы обнаружить нужный сервер. Тома могут перемещаться между серверами, но не части томов, так что эта база данных требует периодического обновления, но перемещения томов случается редко, так что трафик обновления невелик. Перемещение тома является неделимым - сначала на сервере назначения делается копия тома, а затем удаляется оригинал. Этот механизм также используется для репликации томов только для чтения за исключением того, что исходный том не удаляется после его копирования. Этот же алгоритм используется для резервного копирования. Когда делается копия, то она помещается в файловую систему как том только для чтения. В течение последующих 24 часов процесс скопирует этот том на ленту. Дополнительное преимущество этого метода - пользователь, который случайно удалил файл, все еще имеет доступ ко вчерашней копии.
Теперь рассмотрим общий механизм доступа к файлам в AFS. Когда приложение выполняет системный вызов OPEN, то он перехватывается оболочкой клиента, которая первым делом проверяет, не начинается ли имя файла с /cmu. Если нет, то файл локальный, и обрабатывается обычным способом. Если да, то файл разделяемый. Производится грамматический разбор имени, покомпонентно находится fid. По fid проверяется кэш, и здесь имеется три возможности: Файл находится в кэше, и он достоверен. Файл находится в кэше, и он не достоверен. Файл не находится в кэше.
В первом случае используется кэшированный файл. Во втором случае клиент запрашивает сервер, изменялся ли файл после его загрузки. Файл может быть недостоверным, если рабочая станция недавно перезагружалась или же некоторый другой процесс открыл файл для записи, но это не означает, что файл уже модифицирован, и его новая копия записана на сервер. Если файл не изменялся, то используется кэшированный файл. Если он изменялся, то используется новая копия. В третьем случае файл также просто загружается с сервера. Во всех трех случаях конечным результатом будет то, что копия файла будет на локальном диске в каталоге /cash, отмеченная как достоверная.
Вызовы приложения READ и WRITE не перехватываются оболочкой клиента, они обрабатываются обычным способом. Вызовы CLOSE перехватываются оболочкой клиента, которая проверяет, был ли модифицирован файл, и, если да, то переписывает его на сервер, который управляет данным томом.
Помимо кэширования файлов, оболочка клиента также управляет кэшем, который отображает имена файлов в идентификаторы файлов fid. Это ускоряет проверку, находится ли имя в кэше. Проблема возникает, когда файл был удален и заменен другим файлом. Однако этот новый файл будет иметь другое значение поля "уникальный номер", так что fid будет выявлен как недостоверный. При этом клиент удалит вход (pass, fid) и начнет грамматический разбор имени с самого начала. Если дисковый кэш переполняется, то клиент удаляет файлы в соответствии с алгоритмом LRU.
Vice работает на каждом сервере как отдельная многонитевая программа. Каждая нить обрабатывает один запрос. Протокол между сервером и клиентом использует RPC и построен непосредственно на API. В нем есть команды для перемещения файлов в обоих направлениях, блокирования файлов, управления каталогами и некоторые другие. Vice хранит свои таблицы в виртуальной памяти, так что они могут быть произвольной величины.
Так как клиент идентифицирует файлы по их идентификаторам fid, то у сервера возникает следующая проблема: как обеспечить доступ к UNIX-файлу, зная его vnode, но не зная его полное имя. Для решения этой проблемы в AFS в UNIX добавлен новый системный вызов, позволяющий обеспечить доступ к файлам по их индексам vnode.
Реализация DFS на базе AFS дает прекрасный пример того, как работают вместе различные компоненты DCE. DFS работает на каждом узле сети совместно со службой каталогов DCE, обеспечивая единое пространство имен для всех файлов, хранящихся в DFS. DFS использует списки ACL системы безопасности DCE для управления доступом к отдельным файлам. Потоковые функции RPC позволяют DFS передавать через глобальные сети большие объемы данных за одну операцию.
Распределенная служба времени
В распределенных сетевых системах необходимо иметь службу согласования времени. Многие распределенные службы, такие как распределенная файловая система и служба идентификации, используют сравнение дат, сгенерированных на различных компьютерах. Чтобы сравнение имело смысл, пакет DCE должен обеспечивать согласованные временные отметки.
Сервер времени OSF DCE - это система, которая поставляет время другим системам в целях синхронизации. Любая система, не содержащая сервера времени, называется клерком (clerk). Распределенная служба времени использует три типа серверов для координации сетевого времени. Локальный сервер синхронизируется с другими локальными серверами той же локальной сети. Глобальный сервер доступен через расширенную локальную или глобальную сети. Курьер (courier) - это специальный локальный сервер, который периодически сверяет время с глобальными серверами. Через периодические интервалы времени серверы синхронизируются друг с другом с помощью протокола DTS OSF. Этот протокол может взаимодействовать с протоколом синхронизации времени NTP сетей Internet.
Многие фирмы-потребители программного обеспечения уже используют или собираются использовать средства DCE, поэтому ведущие фирмы-производители программного обеспечения, такие как IBM, DEC и Hewlett-Packard, заняты сейчас реализацией и поставкой различных элементов и расширений этой технологии.
Одной из главных особенностей и достоинств пакета DCE OSF является тесная взаимосвязь всех его компонентов. Это свойство пакета иногда становится его недостатком. Так, очень трудно работать в комбинированном окружении, когда одни приложения используют базис DCE, а другие - нет. В версии 1.1 совместимость служб пакета с аналогичными средствами других производителей улучшена. Например, служба Kerberos DCE в текущей версии несовместима с реализацией Kerberos MIT из-за того, что Kerberos DCE работает на базе средств RPC DCE, а Kerberos MIT - нет. OSF обещает полную совместимость с Kerberos MIT в версии 1.1. Имеются и положительные примеры совместимости пакета DCE со средствами других производителей, например со средствами Windows NT. Хотя Windows NT и не является платформой DCE, но их совместимость может быть достигнута за счет полной совместимости средств RPC. Поэтому, после достаточно тщательной работы на уровне исходных кодов, разработчики могут создать DCE-сервер, который сможет обслуживать Windows NT-клиентов, и Windows NT-сервер, который работает с DCE-клиентами.
Для того, чтобы стать действительно распространенным базисом для создания гетерогенных распределенных вычислительных сред, пакет DCE должен обеспечить поддержку двух ключевых технологий - обработку транзакций и объектно-ориентированный подход. Поддержка транзакций совершенно необходима для многих деловых приложений, когда недопустима любая потеря данных или их несогласованность. Две фирмы - IBM и Transarc - предлагают дополнительные средства, работающие над DCE и обеспечивающие обработку транзакций. Что же касается объектно-ориентированных свойств DCE, то OSF собирается снабдить этот пакет средствами, совместимыми с объектно-ориентированной архитектурой CORBA, и работающими над инфраструктурой DCE. После достаточно тщательной работы на уровне исходных кодов, разработчики могут создать DCE-сервер, который сможет обслуживать Windows NT-клиентов, и Windows NT-сервер, который работает с DCE-клиентами.
Для того, чтобы стать действительно распространенным базисом для создания гетерогенных распределенных вычислительных сред, пакет DCE должен обеспечить поддержку двух ключевых технологий - обработку транзакций и объектно-ориентированный подход. Поддержка транзакций совершенно необходима для многих деловых приложений, когда недопустима любая потеря данных или их несогласованность. Две фирмы - IBM и Transarc - предлагают дополнительные средства, работающие над DCE и обеспечивающие обработку транзакций. Что же касается объектно-ориентированных свойств DCE, то OSF собирается снабдить этот пакет средствами, совместимыми с объектно-ориентированной архитектурой CORBA и работающими над инфраструктурой DCE.
40. Семейство операционных систем UNIX История и общая характеристика семейства операционных систем UNIX
UNIX имеет долгую и интересную историю. Начавшись как несерьезный и почти "игрушечный" проект молодых исследователей, UNIX стал многомиллионной индустрией, включив в свою орбиту университеты, многонациональные корпорации, правительства и международные организации стандартизации.
UNIX зародился в лаборатории Bell Labs фирмы AT&T более 20 лет назад. В то время Bell Labs занималась разработкой многопользовательской системы разделения времени MULTICS (Multiplexed Information and Computing Service) совместно с MIT и General Electric, но эта система потерпела неудачу, отчасти из-за слишком амбициозных целей, не соответствовавших уровню компьютеров того времени, а отчасти и из-за того, что она разрабатывалась на языке PL/1, а компилятор PL/1 задерживался и вообще плохо работал после своего запоздалого появления. Поэтому Bell Labs вообще отказалась от участия в проекте MULTICS, что дало возможность одному из ее исследователей, Кену Томпсону, заняться поисковой работой в направлении улучшения операционной среды Bell Labs. Томпсон, а также сотрудник Bell Labs Денис Ритчи и некоторые другие разрабатывали новую файловую систему, многие черты которой вели свое происхождение от MULTICS. Для проверки новой файловой системы Томпсон написал ядро ОС и некоторые программы для компьютера GE-645, который работал под управлением мультипрограммной системы разделения времени GECOS. У Кена Томпсона была написанная им еще во времена работы над MULTICS игра "Space Travel" - "Космическое путешествие". Он запускал ее на компьютере GE-645, но она работала на нем не очень хорошо из-за невысокой эффективности разделения времени. Кроме этого, машинное время GE-645 стоило слишком дорого. В результате Томпсон и Ритчи решили перенести игру на стоящую в углу без дела машину PDP-7 фирмы DEC, имеющую 4096 18-битных слов, телетайп и хороший графический дисплей. Но у PDP-7 было неважное программное обеспечение, и, закончив перенос игры, Томпсон решил реализовать на PDP-7 ту файловую систему, над который он работал на GE-645. Из этой работы и возникла первая версия UNIX, хотя она и не имела в то время никакого названия. Но она уже включала характерную для UNIX файловую систему, основанную на индексных дескрипторах inode, имела подсистему управления процессами и памятью, а также позволяла двум пользователям работать в режиме разделения времени. Система была написана на ассемблере. Имя UNIX (Uniplex Information and Computing Services) было дано ей еще одним сотрудником Bell Labs, Брайаном Керниганом, который первоначально назвал ее UNICS, подчеркивая ее отличие от многопользовательской MULTICS. Вскоре UNICS начали называть UNIX.
Первыми пользователями UNIX'а стали сотрудники отдела патентов Bell Labs, которые нашли ее удобной средой для создания текстов.
Большое влияние на судьбу UNIX оказала перепись ее на языке высокого уровня С, разработанного Денисом Ритчи специально для этих целей. Это произошло в 1973 году, UNIX насчитывал к этому времени уже 25 инсталляций, и в Bell Labs была создана специальная группа поддержки UNIX.
Широкое распространение UNIX получил с 1974 года, после описания этой системы Томпсоном и Ритчи в компьютерном журнале CACM. UNIX получил широкое распространение в университетах, так как для них он поставлялся бесплатно вместе с исходными кодами на С. Широкое распространение эффективных C-компиляторов сделало UNIX уникальной для того времени ОС из-за возможности переноса на различные компьютеры. Университеты внесли значительный вклад в улучшение UNIX и дальнейшую его популяризацию. Еще одним шагом на пути получения признания UNIX как стандартизованной среды стала разработка Денисом Ритчи библиотеки ввода-вывода stdio. Благодаря использованию этой библиотеки для компилятора С, программы для UNIX стали легко переносимыми.
Широкое распространение UNIX породило проблему несовместимости его многочисленных версий. Очевидно, что для пользователя весьма неприятен тот факт, что пакет, купленный для одной версии UNIX, отказывается работать на другой версии UNIX. Периодически делались и делаются попытки стандартизации UNIX, но они пока имели ограниченный успех. Процесс сближения различных версий UNIX и их расхождения носит циклический характер. Перед лицом новой угрозы со стороны какой-либо другой операционной системы различные производители UNIX-версий сближают свои продукты, но затем конкурентная борьба вынуждает их делать оригинальные улучшения и версии снова расходятся. В этом процессе есть и положительная сторона - появление новых идей и средств, улучшающих как UNIX, так и многие другие операционные системы, перенявшие у него за долгие годы его существования много полезного.
Наибольшее распространение получили две весьма несовместимые линии версий UNIX: линия AT&T - UNIX System V, и линия университета Berkeley-BSD. Многие фирмы на основе этих версий разработали и поддерживают свои версии UNIX: SunOS и Solaris фирмы Sun Microsystems, UX фирмы Hewlett-Packard, XENIX фирмы Microsoft, AIX фирмы IBM, UnixWare фирмы Novell (проданный теперь компании SCO), и список этот можно еще долго продолжать.
Наибольшее влияние на унификацию версий UNIX оказали такие стандарты как SVID фирмы AT&T, POSIX, созданный под эгидой IEEE, и XPG4 консорциума X/Open. В этих стандартах сформулированы требования к интерфейсу между приложениями и ОС, что дает возможность приложениям успешно работать под управлением различных версий UNIX.
Независимо от версии, общими для UNIX чертами являются: многопользовательский режим со средствами защиты данных от несанкционированного доступа, реализация мультипрограммной обработки в режиме разделения времени, основанная на использовании алгоритмов вытесняющей многозадачности (preemptive multitasking), использование механизмов виртуальной памяти и свопинга для повышения уровня мультипрограммирования, унификация операций ввода-вывода на основе расширенного использования понятия "файл", иерархическая файловая система, образующая единое дерево каталогов независимо от количества физических устройств, используемых для размещения файлов, переносимость системы за счет написания ее основной части на языке C, разнообразные средства взаимодействия процессов, в том числе и через сеть, кэширование диска для уменьшения среднего времени доступа к файлам.
Далее мы подробно остановимся на основных концепциях версии UNIX System V Release 4, которая вобрала в себя лучшие черты линий UNIX System V и UNIX BSD.
Версия UNIX System V Release 4 - это незаконченная коммерческая версия операционной системы, т.к. в ее кодах отсутствуют многие системные утилиты, необходимые для успешной эксплуатации ОС, например утилиты администрирования или менеджер графического интерфейса. Версия SVR4 является скорее стандартной реализацией кода ядра, вобравшая в себя наиболее популярные и эффективные решения из различных версий ядра UNIX, такие как виртуальная файловая система VFS, отображаемые в память файлы и т.п. Код SVR4 (частично доработанный) лег в основу многих современных коммерческих версий UNIX, таких как HP-UX, Solaris, AIX и т.д.
Семейство сетевых ОС компании Microsoft Сетевые продукты Microsoft
В 1984 году Microsoft выпустила свой первый сетевой продукт, называемый Microsoft Networks, который обычно неформально называют MS-NET. Некоторые концепции, заложенные в MS-NET, такие как введение в структуру базовых компонент - редиректора и сетевого сервера - успешно перешли в LAN Manager, а затем и в Windows NT.
Microsoft все еще поставляет свою сетевую ОС LAN Manager. Большое количество независимых поставщиков имеют лицензии на эту ОС и поддерживают свои собственные версии LAN Manager как часть своих сетевых продуктов. В число этих компаний входят такие известные фирмы как AT&T и Hewlett-Packard. LAN Manager требует установки на файл-сервере операционной системы OS/2, рабочие станции могут работать под DOS, Windows или OS/2. OS/2 - это операционная система, реализующая истинную многозадачность, работающая в защищенном режиме микропроцессоров x86 и выше. LAN Manager использует 32-х битную версию файловой системы OS/2, называемую HPFS, которая оптимизирована для работы на файл-сервере за счет кэширования каталогов и данных. LAN Manager - это первая сетевая ОС, разработанная для поддержки среды клиент-сервер. Ключевыми компонентами LAN Manager являются редиректор и сервер. Особенно эффективно LAN Manager поддерживает архитектуру клиент-сервер для систем управления базами данных. LAN Manager разрешает рабочим станциям под OS/2 поддерживать сетевой сервис по технологии "равный-с-равным". Это означает, что рабочая станция может выполнять функции сервера баз данных, принт-сервера или коммуникационного сервера. Ограничением является то, что только один пользователь, кроме владельца этой рабочей станции, имеет доступ к такому одноранговому сервису.
Для работы в небольшой сети фирма Microsoft предлагает компактную, не требующую значительных аппаратных или программных затрат операционную систему Windows for Workgroups. Эта операционная система позволяет организовать сеть по схеме "равный-с-равным", при этом нет необходимости приобретать специальный компьютер для работы в качестве сетевого сервера. Эта операционная система особенно подходит для решения сетевых задач в коллективах, члены которого ранее широко использовали Windows 3.1. В Windows for Workgroups достигнута высокая производительность сетевой обработки за счет того, что все сетевые драйверы являются 32-х разрядными виртуальными драйверами.
С середины 1993 года Microsoft начала выпуск новых операционных систем "новой технологии" (New Technology - NT) Windows NT.
В сентябре 1995 года компания Microsoft выпустила еще одну новую операционную систему Windows 95 (кодовое название Chicago), предназначенную для замены Windows 3.1 и Windows for Workgroups 3.11 в настольных компьютерах с процессорами Intel x86.
|