Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Постановка задачи. Сжатие синусоидального сигнала с помощью ДИКМ.





 

В ходе выполнения данной лабораторной работы необходимо промоделировать ситуации сжатия сигнала методами в 2-х случаях: сигнал представлен синусоидальным колебанием и непосредственно речевым сигналом. При этом следует определить, какие коэффициенты линейного предсказания являются оптимальными.

Пусть имеется исходный сигнал, изменяющийся по закону

 

(2.1)

 

где A = 0.5 и =10 Гц

 

Возьмем отсчеты этой синусоиды с частотой дискретизации 8000 Гц и квантуем полученные отсчеты 2048 уровнями (11 бит и 1 бит на знак). Получим последовательность входных отсчетов x(n), значения которых будем представлять в соответствующих уровнях квантования.

 

Определим значения предсказанных отсчетов как

 

(2.2)

 

Тогда разностный сигнал (сигнал ошибки), будет равен:

 

(2.3)

 

Благодаря выбору оптимальных коэффициентов a1 и a2 считаем, что полученные отсчеты разностного сигнала будут обладать разрядностью в два раза меньшей, чем отсчеты исходного. То есть значение разностного сигнала должно лежать в пределах от -31 до 31.Если же значение разностного сигнала превышает по модулю границы этих пределов, то в канал отправляем значение -31 или 31,в зависимости от знака е1.

Следовательно, разностный сигнал e2(n), передаваемый в канал, можно записать согласно (2.4):

(2.4)

 

Тогда на приемной стороне по значением предсказанного сигнала (2.5) и разностного сигнала e2(n) получаем значение восстановленного сигнала(2.6):

(2.5)

 

(2.6)

 

Вышеописанный алгоритм реализуем при помощи технологии Matlab. Ниже приведен подробный листинг программы:

 

 

clear all;

a1=1.8;

a2=-0.8;

t=0.2;

Fs=8000;

A=1;

F=10;

Phi=0;

tm=0:1/Fs:t;

x=A*sind((F*360).*tm+Phi);

[x1,sh,kvbin,x]=DAC(x,Fs,t,12,2);

q = fft(x,Fs*t);

q = q(1:(Fs*t/2));

m = abs(q);

m1=m/(Fs*t/2);

f = (0:((Fs*t)-1)/2)/t;

tm=tm(1:Fs*t);

x=x(1:Fs*t);

 

 

for n=1:Fs*t

if n==1

pr_x(n)=0;

elseif n==2

pr_x(n)=round((a1*x(n-1)));

else

pr_x(n)=round(((a1*x(n-1)+a2*x(n-2))));

end

 

end

for n=1:Fs*t

if n==1

e(n)=x(n);

else

e(n)=x(n)-pr_x(n);

end

 

end

st=6;

 

for n=1:Fs*t

if e(n)>0

if e(n)>(2^(st-1))-1

e(n)=(2^(st-1))-1;

end

elseif e(n)<0

if e(n)<-((2^(st-1))-1)

e(n)=-((2^(st-1))-1);

end

end

end

 

diff=e;

diff_pr=e;

for n=1:Fs*t

if n==1

y(n)=e(n);

pr_y(n)=0;

elseif n==2

pr_y(n)=round((a1*y(n-1)));

y(n)=e(n)+pr_y(n);

else

pr_y(n)=round(((a1*y(n-1)+a2*y(n-2))));

y(n)=e(n)+pr_y(n);

end

diff(n)=((y(n)-x(n))^2)^0.5;

diff_pr(n)=pr_x(n)-pr_y(n);

 

end

dif_sr=0;

for i=1:Fs*t

 

dif_sr=dif_sr+diff_pr(n);

end

dif_sr=dif_sr/Fs*t;

error1=e;

error1(1)=0;

error=0;

e1(1)=e(1);

e1(2)=e(2);

for n=1:Fs*t

 

error=error+((x(n)-y(n))^2);

if n==1

error1(n)=((x(n)-y(n))^2);

else

error1(n)=error1(n-1)+((x(n)-y(n))^2);

end

end

%figure

%plot(tm,error1);

w = fft(e,Fs*t);

w = w(1:(Fs*t/2));

r = abs(w);

r1=r/(Fs*t/2);

f=f(1:20);

r1=r1(1:20);

m1=m1(1:20);

 

figure

plot (tm,y);

plot(tm,x,'b',tm,y,'--m',tm,e,'r','LineWidth',1.5)

title('Осцилограмма сигнала');% Подпись графика

xlabel('Время (с)'), grid on;% Подпись оси х графика

ylabel('Амплитуда'), grid on;% Подпись оси у графика

%figure

%plot(tm,pr_x,'b',tm,pr_y,'--m','LineWidth',1.5)

%title('Осцилограмма ПРЕДСКАЗАННОГО сигнала');% Подпись графика

%xlabel('Время (с)'), grid on;% Подпись оси х графика

%ylabel('Амплитуда'), grid on;% Подпись оси у графика

 

 

%figure

%plot(tm,diff_pr,'b','LineWidth',1.5)

%title('Осциллограмма разности предсказаний сигнала');% Подпись графика

%xlabel('Время (с)'), grid on;% Подпись оси х графика

%ylabel('Амплитуда'), grid on;% Подпись оси у графика

 

figure% Создаем новое окно

plot(f,m1,'r',f,r1,'b','LineWidth',1.5);

title('Спектр сигнала, красным спектр исходного сигнала, синим - разностного');% Подпись графика

xlabel('Частота (Гц)'), grid on;% Подпись оси х графика

ylabel('Амплитуда'), grid on;% Подпись оси у графика

 

%figure

%plot(tm,diff,'b','LineWidth',1.5);

 

%title('Осциллограмма разности сигналов');% Подпись графика

%xlabel('Время (с)'), grid on;% Подпись оси х графика

 

file_x=fopen('x_sinus.txt','wt');

for n=1:Fs*t;

fprintf(file_x,'%f\n', x(n));

end

fclose(file_x);

 

file_x=fopen('pr_x_sinus.txt','wt');

for n=1:Fs*t;

fprintf(file_x,'%f\n', pr_x(n));

end

fclose(file_x);

 

file_x=fopen('pr_y_sinus.txt','wt');

for n=1:Fs*t;

fprintf(file_x,'%f\n', pr_y(n));

end

fclose(file_x);

%

%

%

file_x=fopen('e_sinus.txt','wt');

for n=1:Fs*t;%

 

fprintf(file_x,'%f\n', e(n));

end

fclose(file_x);

 

file_x=fopen('y_sinus.txt','wt');

for n=1:Fs*t;

fprintf(file_x,'%f\n', y(n));

end

fclose(file_x);

 

Введенная подпрограмма “DAC” – подпрограмма квантователя. Ее листинг проиллюстрирован ниже:

 

function [kvant,sh,kvbin, kv]=DAC(x,Fs,t,n,sh)

%АЦП

if sh==2

xx=abs(x);

sh=max(xx)/2^(n-1);

else

xx=abs(x);

sh=sh;

end

for s0=1:Fs*t

i=2^(n-1)-1;

 

if x(s0)<0

for s1=1:2^(n-1)

if xx(s0)<i*sh

i=i-1;

else

if xx(s0)>(i+1)*sh-sh/2

kv(s0)=(i+1)*-1;

else

kv(s0)=i*-1;

 

 

end

end

end

elseif x(s0)>0

for s1=1:2^(n-1)

if xx(s0)<i*sh

i=i-1;

else

if xx(s0)>(i+1)*sh-sh/2

kv(s0)=(i+1);

%kvb(s0)=de2bi(i+1);

else

kv(s0)=i;

%kvb(s0)=de2bi(i);

 

end

end

end

elseif x(s0)==max(s0)

kv=i;

 

else

kv(s0)=0;

 

 

end

 

 

end

kvb=de2bi(abs(kv));

kvb1=zeros(Fs*t,n);

 

%for s3=1:Fs*t

% if x(s3)<0

% zn=0;

%

% else

% zn=1;

% end

% kvb1(s3,1)=de2bi(zn);

% lo=kvb(s3,:);

% kvb1(s3,2:n)= lo;

%end

kvant=kv*sh;

kvbin=kvb1;

 

end

 

 

Воспользовавшись вышеприведенной программой, будем изменять коэффициенты а1 и а2 таким образом, чтобы подобрать оптимальные коэффициенты для передачи синусоидального сигнала.

Представим полученные при этом спектрограммы и осциллограммы сигнала для различных пар коэффициентов а1 и а2.

Временные диаграммы отсчетов исходного сигнала (x), предсказанного на передающей стороне (), разностного (e), предсказанного на приемной стороне() и принятого сигнала (y), и спектрограммы этих сигналов, представлены ниже.

 

 


Эксперимент № 1

 

а1=0.1 и а2=-0.4

 

Рис. 2

 

 

Рис. 3

 

Эксперимент № 2

 

а1=0.1 и а2=-0.8

 

Рис. 4

 

Рис. 5

 

 

Эксперимент № 3

 

а1=0.5 и а2=-0.8

 

Рис. 6

 

Рис. 7

 

 

Эксперимент № 4

 

а1=1.4 и а2=-0.8

 

Рис. 8

 

Рис. 9

 

Эксперимент № 5

 

а1=1.8 и а2=-0.8

 

Рис. 10

 

Рис. 11

 

 

Эксперимент № 6

 

а1=1.8 и а2=-0.9

 

Рис. 12

 

Рис. 13

 

 

Эксперимент № 7

 

а1=1.8 и а2=-1.2

 

 

Рис. 14

 

Рис. 15

 

Эксперимент № 8

 

а1=2.2 и а2=-0.8

 

Рис. 16

 

Рис. 17

 

Проанализировав полученные результаты: таблицы значений, осциллограммы и спектрограммы сигналов, следует сделать вывод о том, что оптимальными для передачи синусоидального сигнала являются коэффициенты а1=1.8 и а2= -0.8. Именно при этих значениях зможно передать разностный сигнал в пределах 6 бит и получить итоговый сигнал без заметных искажений.

 







Дата добавления: 2015-08-12; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия