Классификация органических соединений
Вы уже знаете, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения — теория А. М. Бутлерова. Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет — цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цепи (циклы) в молекулах. Помимо атомов углерода и водорода, молекулы органических веществ могут содержать атомы и других химических элементов. Вещества, в молекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероциклическим соединениям.
Функциональная группа — группа атомов, которая определяет наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений. В молекулах кетонов карбонильная функциональная группа связана с двумя атомами углерода, а в молекулах альдегидов — с одним атомом углерода и атомом водорода.
Простые эфиры можно рассматривать как продукты замещения атома водорода в гидроксильной группе спиртов на углеводородный радикал. В молекулах этих соединений два углеводородных радикала связаны через оксигруппу —О—, которую часто называют поэтому «кислородным мостиком». Общая формула простых эфиров R1—О—R2.
Сложные эфиры содержат в молекуле функциональную группу атомов, которую так и называют — сложноэфирная. Сложные эфиры можно считать производными карбоновых кислот, в которых атом водорода карбоксильной группы замещен на углеводородный радикал, что делает понятными их названия. Нитросоединения содержат в молекуле нитрогруппу —N02, например: СН3—СН2—NO2 Замещая в молекуле аммиака атомы водорода на углеводородные радикалы, можно получить первичные (RNН2), вторичные (R2NH) и третичные (R3N) амины: СН3—NH2 СН3—СН2—NH—СН2—СН3 N(СН2—СН3)3 В состав молекул органических соединений может входить несколько одинаковых (полифункциональные соединения) или разных (гетерофункциональные соединения) групп. Например, полифункциональным соединением является многоатомный спирт — глицерин. Среди важных гетерофункциональных соединений выделим углеводы (альдегидоспирты и кетоноспирты) и аминокислоты. Строение и свойства соединений этих классов будут рассмотрены ниже. В таблице 3 приведены основные классы органических соединений и их представители. Рассмотрев классификацию ациклических соединений по виду функциональных групп, входящих в их состав, или наличию кратной связи, перейдем к органическим веществам, содержащим в молекуле замкнутую цепь атомов углерода.
Карбоциклические (алициклические) соединения Карбоциклическими соединениями называются органические вещества, содержащие в молекуле замкнутую цепь атомов углерода (цикл). Цикл может содержать разное количество атомов углерода, связанных одинарными или кратными связями. Структурные формулы алициклических соединений часто упрощают, указывая лишь химические связи скелета молекулы и функциональные группы, входящие в ее состав:
Следует особо отметить ароматические соединения — арены — разновидность карбоциклических соединений, содержащих в молекуле специфическую систему чередующихся двойных и одинарных связей (так называемых сопряженных п</span-связей). Например:
Многие соединения этого ряда — бензальдегид, эфиры бензойной кислоты и другие производные — были выделены впервые из разного рода приятно пахнущих ладанов, ароматических масел и бальзамов, поэтому их и назвали ароматическими. Система сопряженных п -связей в цикле обусловливает устойчивость молекул и набор специфических свойств, отличающих их от алифатических соединений с теми же функциональными группами.
Вам уже известно, что гетероатомы (О, N, S) могут не только входить в состав функциональных групп, но и быть частью замкнутого скелета молекулы — цикла. Такие соединения называют гетероциклическими или гетероциклами.
Гетероциклические соединения играют важную роль в биохимических процессах: они входят в состав многих биологически важных веществ — белков и нуклеиновых кислот. Некоторые гетероциклы, например пиридин, как и арены (ароматические карбоциклы), содержат сопряженную систему я-связей и, следовательно, могут быть отнесены к ароматическим соединениям.
|