Студопедия — Гуміфікація
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Гуміфікація






процес мікробіологічного розкладу органічних решток у вологому середовищі при утрудненому доступі кисню. Призводить до утворення гумусу.

Здатність твердої фази ґрунту вбирати тверді, рідкі і газоподібні речовини називають вбирною здатністю

Механічне вбирання відбувається під час фільтрації води крізь грунт. При цьому пори і капіляри затримують частки, розмір яких більший за діаметр капілярів. Завдяки механічному вбиранню людина одержує чисту джерельну воду, а саме явище широко використовують при будівництві штучних фільтрів для очищення води.

Молекулярно -сорбційне (фізичне) вбирання проявляється в тому, що на поверхні колоїдів ґрунту вбираються молекули речовин, які мають полярну будову. Прикладом фізичного вбирання є адсорбція ґрунтом молекул води. Вода, увібрана колоїдами ґрунту, називається гігроскопічною. Глинисті ґрунти, які містять в собі велику кількість колоїдних часток, мають високу гігроскопічність, піщані, навпаки, є низькогігроскопічними.

Іонно-сорбційне або фізико-хімічне (обмінне) вбирання – здатність ґрунту вбирати на поверхні колоїдних часток іони і обмінювати їх на еквівалентну кількість іонів ґрунтового розчину.

Хімічне вбирання зумовлено утворенням в ґрунтовому розчині важкорозчинних сполук, які впадають в осад. Катіони і аніони, які надходять у грунт з атмосферними опадами, добривами тощо, взаємодіють з солями ґрунтового розчину. В результаті утворюються нерозчинні або важкорозчинні сполуки.

Наприклад:

CaCl2+Na2CO3®¯CaCO3+2NaCl

[ГВК2-]Ca2++Na2SO4®[ГВК2-]2Na-+¯CaSO4

Біологічне вбирання зумовлене здатністю живих організмів, що населяють грунт, засвоювати хімічні елементи. Після відмирання організмів засвоєні ними хімічні елементи акумулюються у верхньому шарі ґрунту у складі органічних речовин.

Колоїди, насичені одновалентними катіонами Na+, K+, протонами водню (Н+), у грунті перебувають у стані золю. Ці елементи спричиняють процес пептизації. Внаслідок заміни їх на дво- і тривалентні відбувається коагуляція. При вапнуванні (внесення СаСО3) і гіпсуванні (внесення CaSO4) грунтів Са2+ витісняє з ГВК увібрані Н+, К+, Na+ і зумовлює перехід золю в гель.

Основою колоїдної міцели є ядро, яке являє собою складну сполуку аморфної або кристалічної будови різного хімічного складу. На поверхні ядра розташований шар іонів, який визначає потенціал частки. Ядро міцели з цим шаром іонів називають гранулою Між гранулою і розчином, що оточує колоїд, виникає електричний потенціал, завдяки якому з розчину вбираються іони з протилежним зарядом. Так формується шар компенсуючих іонів. Таким чином, навколо ядра міцели утворюється подвійний електронний шар. Іони компенсуючого шару, в свою чергу, розташовані навколо гранули двома шарами. Внутрішній – нерухомий шар, іони якого міцно утримуються на поверхні гранули. Гранулу разом з нерухомим шаром називають колоїдною часткою. Зовнішній шар компенсуючих іонів називають дифузним. Іони цього шару можуть еквівалентно обмінюватись на іони грунтового розчину.

Сукупність всіх колоїдів називають колоїдним, або ґрунтовим вбирним комплексом (КВК, ГВК).

Колоїди, насичені одновалентними катіонами Na+, K+, протонами водню (Н+), у грунті перебувають у стані золю. Ці елементи спричиняють процес пептизації. Внаслідок заміни їх на дво- і тривалентні відбувається коагуляція. При вапнуванні (внесення СаСО3) і гіпсуванні (внесення CaSO4) грунтів Са2+ витісняє з ГВК увібрані Н+, К+, Na+ і зумовлює перехід золю в гель.

Тому ґрунтову вологу називають ґрунтовим розчином. Більша частина хімічних сполук перебуває в ґрунтовому розчині у вигляді іонів. Основними катіонами ґрунтового розчину є Ca2+, Mg2+, Na+, K+, NH4+, H+. В незначній кількості містяться рідкісні та розсіяні елементи, а саме: Cu2+, Pb2+, Zn2+, Ni2+, Co2+ та ін. В засолених ґрунтах багато Na+, Mg2+, Sr2+ і B3+.

Основними аніонами ґрунтового розчину є (НСО3)-, (NO2)-, (NO3)-, (PO4)3-, (SO4)2-, Cl- та ін. У незасолених ґрунтах переважає бікарбонат-іон, а в засолених – хлор- і сульфат-іон.

Реакція ґрунтового розчину зумовлюється наявністю і співвідношенням в ньому водневих (Н+) і гідроксильних (ОН-) іонів. Величину активної реакції виражають в одиницях рН – десятичний логарифм концентрації Н+-іонів з від’ємним знаком. Отже, рН = -lg [H+].

Збільшення концентрації іонів Н+ (доливання кислоти) зумовлює кислу реакцію розчину [H+] > 10-7. Збільшення концентрації основ підвищує концентрацію іонів ОН- Розчин набуває лужної реакції [ОН-] > 10-7.

В нейтральних розчинах, в яких [H+] = [ОН-] = 10-7, величина рН = 7, в кислих – менша 7, в лужних – більша 7. Рн ґрунтових розчинів коливається в межах від 3 до 9..

Актуальна кислотність (рНв или рНН2О) зумовлена наявністю в ґрунтовому розчині вільних іонів Н+. Її величину (рН) визначають у водних витяжках.

Потенціальна кислотність зумовлена наявністю в ГВК увібраних іонів Н+ і Аl3+, які знаходяться в твердій фазі ґрунту. Іони алюмінію підкислюють розчин внаслідок гідролізу солей алюмінію.

AlCl3+ 3H2O®Al(OH)3+ 3HCl

За способом визначення потенційної кислотності виділяють обмінну і гідролітичну кислотності.

Обмінна кислотність (рНKCl або рНс) – концентрація іонів водню, витіснених з дифузного шару колоїдної міцели катіонами нейтральних солей. Для визначення обмінної кислотності використовують 1.0 н. розчин KCl (рН близько 6,0).

Гідролітична кислотність (Нг). Іони водню утримуються колоїдною часткою дуже міцно і при обміні з катіонами нейтральної солі повністю не витісняються. Якщо діяти на грунт гідролітично лужною сіллю (солі з сильною основою і слабким кислотним залишком), то відбудеться майже повне витіснення увібраних іонів водню. Для визначення гідролітичної кислотності використовують ІМ розчин CH3COONa (рН близько 8,2)..

За величиною рН ґрунти поділяють на сім агровиробничних груп (таблиця Агровиробничі групи ґрунтів за величиною рН

рН Група грунтів Тип ґрунтів
< 4,5 Сильнокислі Болотні, болотно-підзолисті, підзолисті, червоноземи, тропічні
4,5 – 5,5 Кислі Підзолисті, дерново-підзолисті, червоноземи, тропічні
5,5 – 6,5 Слабокислі Підзолисті, дерново-підзолисті, сірі лісові, червоноземи, тропічні
6,5 – 7,0 Нейтральні Сірі лісові, чорноземи
7,0 – 7,5 Слабколужні Чорноземи південні, каштанові
7.5 – 8.5 Лужні Солонці, солончаки
> 8,5 Сильнолужні Содові солонці, солончаки

Кожна агровиробнича група потребує певних меліоративних заходів. Для нейтралізації надлишкової кислотності проводять вапнування ґрунтів. Дозу вапна розраховують за гідролітичною кислотністю орного горизонту. Внесена доза вапна має повністю нейтралізувати увібрані Н+ і AL3+. Якщо 20-сантиметровий шар ґрунту має щільність 1.3 г/см3, його маса на площі 1 га становитиме 2600т. Встановлено, що для нейтралізації 1 г-екв гідролітичної кислотності на 100 г ґрунту на 1 га слід вносити 1.3 т СаСО3. Проте в грунт вносять не повну дозу вапна, а певну її частину залежно від біологічних особливостей культурних рослин.

Лужна реакція ґрунтових розчинів може бути зумовлена різними сполуками: карбонатами, гідрокарбонатами хлоридами і сульфатами лужних і лужноземельних металів, гуматами натрію, силікатами та іншими сполуками. Основну роль при цьому відіграють гідролітично лужні солі слабких кислот, а саме: карбонати натрію і калію, карбонати кальцію і магнію.

Актуальна лужність зумовлена наявністю в ґрунтовому розчині гідролітично лужних солей, під час дисоціації яких утворюється значна кількість гідроксильних іонів. Лужність ґрунту визначають титруванням водної витяжки в присутності різних індикаторів і виражають в міліграм-еквівалентах на 100г ґрунту.

Потенціальна лужність проявляється у ґрунтах, які містять увібраний натрій. При дії на грунт вугільною кислотою увібраний ГВК натрій зміщується іонами Н+. В ґрунтовому розчині утворюється сода, яка підвищує лужну реакцію:

Меліорація лужних ґрунтів проводиться внесенням гіпсу (гіпсування) та інших солей (кальцієва селітра сульфат заліза), піритні недогарки). При цьому відбувається заміщення обмінного натрію на кальцій.

Сульфат натрію, який при цьому утворюється, потрібно вимити прісною водою в нижні горизонти. При внесенні гіпсу також відбувається нейтралізація соди, яка є найшкідливішою сполукою в засолених грунтах.

+

Содові солончаки доцільно меліорувати сірчаною кислотою (кислування).

В зависимости от подвижности и доступности растениям раз­личают несколько форм воды в почве: 1) гравитационную; 2) капиллярную; 3) сорбированную; 4) парообразную; 5) грунто­вую; 6) твердую; 7) химически связанную и кристаллизационную.

Непосредственно для питания растений имеет значение только гравитационная и капиллярная вода, а остальные формы почвенной влаги, кроме небольшой части пле­ночной, растениям недоступны.

Гравитационная вода заполняет капиллярные поры между структур­ными — отдельностями, по которым она передвигается под влиянием си­лы тяжести (отсюда и ее название).

Капиллярная вода заполняет капиллярные поры, главным об­разом, внутри структурных отдельностей. Она может передвигать­ся в почве во всех направлениях.

Сорбированная вода удерживается на поверхности почвенных частиц сорбционными силами, то есть молекулы воды притягива­ются к твердым частицам почвы и прочно удерживаются ими. Эту форму воды подразделяют на два вида: пленочную и гигро­скопическую.

Пленочная вода окружает твердые частицы почвы в виде плен­ки, притягиваясь к ним под действием поверхностной энергии. Она передвигается только под влиянием молекулярных сил в раз­ных направлениях, но всегда от более толстых пленок к тонким.

Пленочная вода определяет смачивание почвы, но растениям почти недоступна, так как притягивается к поверхности частиц твердой фазы почвы с силой в несколько тысяч атмосфер (от 6 до 10 тыс.).

Гигроскопическая влага представляет собой молекулы водяно­го пара, удерживаемые поверхностным притяжением почвенных частиц подобно тому, как удерживается пленочная вода. Поэтому гигроскопическая влага не принимает участия в газовом давле­нии окружающей среды и не способна передвигаться. Для расте­ний она недоступна, полностью удаляется при высушивании поч­вы в течение нескольких часов при температуре 100—105 °С.

Свободная парообразная влага входит в состав почвенного воздуха в виде отдельных молекул водяного пара и поэтому при­нимает участие в газовом давлении и передвигается из мест с большей упругостью пара в места с меньшей упругостью. Она не­доступна для растений, но при переходе в капельно жидкую мо­жет усваиваться ими.

Грунтовая вода — это влага водоносного слоя почвы, лежаще­го ниже почвенной толщи, удерживаемая слоем водоупора. Ис­пользование грунтовой воды растениями возможно, но при близ­ком залегании и поднятии до корнеобитаемого слоя.

Твердая вода (лед) — переход влаги из жидкого состояния в твердое происходит у свободных форм влаги при температуре ниже 0 °С.

Водопроникність – це здатність грунту вбирати і пропускати через себе воду. Процес водопроникності включає вбирання вологи і її фільтрацію.

Вологоємність – здатність грунту утримувати воду. В залежності від водоутримуючих сил розрізняють максимальну адсорбційну, капілярну, гранично-польову і повну вологоємності.

Максимальна адсорбційна вологоємність (МАВ) – це найбільше недоступне рослинам кількість вологи, яка міцно утримується молекулярними силами грунту (адсорбцією). Вона залежить від сумарної поверхні частинок, а також від вмісту гумусу: чим більше в грунті мулистих часток і гумусу, тим вище максимальна адсорбційна вологоємність.

Капілярна вологоємність (KB) – кількість води, яка утримується в грунті при заповненні капілярних пір над рівнем грунтових вод. Капілярна вологоємність залежить від висоти над дзеркалом грунтових вод. Поблизу грунтових вод вона найбільша, а з підняттям до поверхні зменшується.

Гранично-польова вологоємність (ППВ) – кількість води, яка утримується в польових умовах після повного зволоження грунту з поверхні і вільного стікання надлишкової води. Грунтові води в цьому випадку не роблять впливу на вологість грунту. Гранично-польова вологоємність залежить

від гранулометричного складу, щільності та пористості грунту. Вона відповідає кількості капілярно-підвішеної води. Синонім гранично-польової вологоємності – найменша вологоємність (НВ).

Повної вологоємністю (ПВ) називають такий стан вологості грунту, коли всі пори заповнені водою. Повна вологоємність спостерігається над водотривкими горизонтами, на яких знаходяться грунтові води. В умовах повного насичення грунту водою відсутній аерація, що утруднює дихання коренів рослин.

Абсолютна вологість – це загальна кількість води в грунті, виражене у відсотках по відношенню до маси грунту.

Відносна вологість – відношення абсолютної вологості даної грунту до її гранично-польової вологоємності.

Вологість завяданія росли н – вологість грунту, при якій у рослин з’являються ознаки завяданія, не зникаючі при приміщенні рослин в атмосферу, насичену водяними парами, тобто це нижня межа доступності рослинам вологи. Знаючи абсолютну вологість і вологість завяданія рослин, можна розрахувати запас продуктивної вологи.

Продуктивна (активна) волога – кількість води понад вологості завяданія, що використовується рослинами для створення урожаю. Так, якщо абсолютна вологість даної грунту в орному шарі становить 43%, а вологість завяданія – 13%, то запас продуктивної вологи дорівнює 30%.

 

БУФЕРНІСТЬ ГРУНТУ

 

- здатність грунту протистояти підкислюванню або підлуговуванню ґрунтового розчину від внесення добрив чи впливу інших факторів Б. г залежить в основному від властивостей твердої фази грунту, кількості та якості його найдрібніших органічних та мінеральних частинок - колоїдів (див. Колоїдні системи), їхньої вбирної здатності (див Вбирна здатність грунту). Збагачення грунту на органічні речовини (гній, компости) посилює його буферність, підвищує родючість І. Г. Захарченко.

 







Дата добавления: 2015-07-04; просмотров: 409. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия