Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Домашнее задание. 1. Вычислить скалярное произведение двух векторов , зная их разложение по трем единичным взаимно перпендикулярным векторам





1. Вычислить скалярное произведение двух векторов , зная их разложение по трем единичным взаимно перпендикулярным векторам

; .

2. Найти длину вектора , зная, что – взаимно перпендику-

лярные орты.

3. Векторы попарно образуют друг с другом углы, каждый из которых равен . Зная, что , определить модуль вектора .

4. Доказать, что вектор перпендикулярен к вектору .

5. Даны векторы , совпадающие со сторонами треугольника АВС. Найти разложение вектора, приложенного к вершине В этого треугольника и совпадающего с его высотой BD по базису .

6. Вычислить угол между векторами , где - единичные взаимно перпендикулярные векторы.

7. Даны силы , приложенные к одной точке. Вычислить, какую работу производит равнодействующая этих сил, когда ее точка приложения, двигаясь прямолинейно, перемещается из положения в положение .

 

8. Даны вершины треугольника . Определить его внутренний угол при вершине В.

9. Вычислив внутренние углы треугольника с вершинами , , убедиться, что этот треугольник равнобедренный.

10. Найти вектор , зная, что он перпендикулярен векторам и .

11. Найти вектор , коллинеарный вектору и удовлетворяющий условию , где .

12. Вычислить проекцию вектора на ось вектора .

13. Даны векторы . Вычислить .

14. Даны точки . Вычислить проекцию вектора на ось вектора .

 

 







Дата добавления: 2015-08-12; просмотров: 1074. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия