Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Условия применения факторного анализа. Практическое выполнение факторного анализа начинается с проверки его условий





Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:

· Все признаки должны быть количественными.

· Число наблюдений должно быть в два раза больше числа переменных.

· Выборка должна быть однородна.

· Исходные переменные должны быть распределены симметрично.

Факторный анализ осуществляется по коррелирующим переменным

Главными целями факторного анализа являются сокращение числа перемен­ных (редукция данных) и определение структуры взаимосвязей между перемен­ными, т.е. классификация переменных. Поэтому факторный анализ использу­ется или как метод сокращения данных, или как метод классификации переменных.

Сокращение достигается путем выделения скрытых общих факторов, объяс­няющих связи между наблюдаемыми признаками (переменными) объекта, т.е. вместо исходного набора переменных появится возможность анализировать дан­ные по выделенным факторам, число которых значительно меньше исходного числа взаимосвязанных переменных.

Взаимосвязи между переменными можно обнаружить с помощью диаграммы рассеяния. Полученная путем подгонки линия регрессии дает графическое пред­ставление зависимости. Если определить новую переменную на основе линии регрессии, изображенной на этой диаграмме, то такая переменная будет включать наиболее существенные черты обеих переменных. Итак, произошло сокращение числа переменных — две заменили одной. Причем новый фактор (переменная) яв­ляется линейной комбинацией двух исходных. Приведенный пример, в котором две коррелированные переменные объединены в один фактор, показывает глав­ную идею факторного анализа.

В основном процедура выделения факторов подобна вращению, максимизирующему дисперсию исходного пространства переменных. Например, на диа­грамме рассеяния можно рассматривать линию регрессии как ось X, повернув ее так, что она совпадает с прямой регрессии. Этот тип вращения называется враще­нием, максимизирующим дисперсию (варимакс), так как цель вращения заклю­чается в максимизации изменчивости новой переменной (фактора) и минимиза­ции разброса исходных переменных. Если пример с двумя переменными распространить на большее число переменных, то вычисления становятся слож­нее, однако основной принцип представления двух или более зависимых пере­менных одним фактором остается в силе.

Число наблюдаемых объектов может быть большим и взаимосвязи между ними чрезвычайно сложными. Однако наблюдая объект, выдвигаем гипотезу, что существует небольшое число факторов, которые влияют на измеряемые парамет­ры. Естественно желание выделить как можно меньшее число скрытых общих факторов и чтобы выделенные факторы как можно точнее приближали наблю­даемые параметры, описывали связи между ними.

Выделяемые таким образом факторы называют общими, так как они воздейст­вуют на все признаки (параметры) объекта, а не на какой-то один признак или группу признаков. Эти факторы являются гипотетическими, скрытыми, их нель­зя измерить непосредственно, однако существуют статистические методы их вы­деления.

Рассмотрим модель факторного анализа. Пусть задана система перемен­ных Х1, Х2,..,Хп. Например, X, — производительность труда, Х3 — фондоотдача Хп — себестоимость. Значения переменных или признаков Хр Х2п известны для каждого из N предприятий (объектов). Представим исходную информацию в виде матрицы.X = хji размерности (n х N). Каждая строка состоит из значений одного показателя для каждого из N объектов исследования. Предполагается, что каждый элемент этой матрицы хji является результатом воздействия некоторого числа m гипотетических общих факторов и одного характерного фактора

 

(1)

где ajr — весовой коэффициент j-й переменной на r-м общем факторе или нагрузка j-й переменной на r-м общем факторе; fri — значение r-го общего фактора на i-м объекте исследования; d, — нагрузка или весовой коэффициент j-й переменной на j-м характерном факторе; Uji— значение j-го характерного фактора на i-м объекте исследования; j= 1,…,п; i = 1,..., N;r= 1,... т; т << п.

Так как массив данных X = представляет величины различной размерности, то для того чтобы перейти к безразмерным величинам, пронормируем элементы массива.

 

(2)

где Xj — выборочное среднеей переменной (признака); S, — выборочная дис­персия j-й переменной. После этих преобразований получим

 

(3)

 

где ajm — неизвестные коэффициенты, называемые факторными нагрузками; v. называется остатком (невязкой), или остаточным специфическим фактором. За­дача состоит в том, чтобы оценить а некоторым оптимальным образом.

Обычно в моделях факторного анализа предполагаются выполненными сле­дующие предположения:

• Хji имеют многомерное нормальное распределение;

• общие факторы f 1i являются либо некоррелированными случайными вели­чинами с дисперсией 1, либо неизвестными случайными параметрами;

• остатки (остаточные факторы) U1i имеют нормальное распределение, не коррелированны между собой и не зависят от общих факторов.

Если в качестве критерия оптимальности используют минимум расхождения между ковариационной матрицей исходных признаков и той, которая получается после оценивания факторных нагрузок (мера «расхождения» двух матриц, в дан­ном случае есть просто евклидова норма их разности), то приходят к методу глав­ных компонент.

Если критерием оптимальности является максимальная близость исходных корреляций признаков к тем, которые получены в модели после оценивания на­грузок, то говорят о методах анализа главных факторов.

Правая часть выражения (3) линейна и напоминает выражение для регрес­сионного анализа. Однако здесь есть большая разница. В регрессионном анализе система переменных предполагается измеряемой непосредственно (например, взяты из отчетной документации предприятий). Однако в факторном анализе об­щие и характерные факторы являются гипотетическими (неизвестными). Их нужно оценить методами математической статистики и линейной алгебры.







Дата добавления: 2015-08-12; просмотров: 588. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия