ЯДЕРНО-МАГНІТНИЙ МЕТОД
Ядерно-магнітний метод (ЯММ) заснований на вивченні величин штучного електромагнітного поля, що утворюється в результаті взаємодії магнітного і механічного моментів ядер хімічних елементів гірських порід із зовнішнім магнітним полем. Усі елементарні частинки та ядра хімічних елементів, окрім маси і порядкового номеру (заряду), характеризуються величинами власного механічного моменту (спіну) і магнітного моменту , а також гіромагнітним відношенням , що являє собою відношення магнітного моменту ядра до його спіну: (6) Серед породоутворюючих елементів ефект ядерного магнетизму найбільш сильно виявляється для водню, оскільки ядрам атомів водню притаманне найбільше значення гіромагнітного відношення. Завдяки цьому їхню присутність вдається встановити в умовах свердловини. Ядерний магнетизм усіх інших елементів є занадто малим, аби його можна було застосовувати для вивчення розрізів свердловин. Тому при дослідженні гірських порід достатньо враховувати лише ядерну намагніченість протонів. В постійному зовнішньому магнітному полі на ядро, яке має власний магнітний момент, діє сила, що намагається розташувати момент ядра паралельно цьому полю. В той же час внаслідок дії механічного моменту ядра, що намагається зберегти положення власної вісі обертання, ядро буде прецесувати навколо напрямку зовнішнього поля (рис. 4) з частотою , пропорційною напруженості поля , яка називається ларморовою частотою і складає біля 2 кГц: (7) Ядра водню з магнітними моментами в зовнішніх магнітних полях намагаються орієнтуватися в напрямку вектора напруженості цього поля. Внаслідок цього виникає результуючий магнітний момент (вектор ядерної намагніченості), що являє собою векторну суму елементарних магнітних моментів : , де – кількість ядер в об’ємі речовини.
Рис. 4. Схема прецесії вектора магнітного моменту μ; ядра водню (протона) навколо вектора зовнішнього магнітного поля Н з
В природному магнітному полі Землі (МПЗ) сумарний вектор ядерної намагніченості буде спрямованим в напрямку вектору , але незначним за амплітудою, оскільки напруженість МПЗ є відносно малою величиною ( А/м). Але, якщо на ядра елементів подіяти сильним магнітним полем (полем поляризації) напруженістю , перпендикулярним до поля Землі , то ядра будуть орієнтуватися в напрямку сумарного поля , і сумарний вектор ядерної намагніченості буде мати значну амплітуду, внаслідок узгодженої орієнтації переважної більшості елементарних магнітних моментів (рис. 5, а).
Рис. 5. Поведінка вектору сумарної ядерної намагніченості М речовини в умовах накладення на магнітне поле Землі Н 0 поля поляризації Н пол (а), та в перші секунди після його зняття (б). При знятті поля поляризації ядра водню переорієнтовуються в напрямку вектора МПЗ (рис. 5, б), синхронно прецесуючи навколо нього протягом деякого часу (біля 2-х секунд) з ларморовою частотою . За кілька секунд відбувається втрата синфазності прецесій окремих елементарних магнітних моментів внаслідок взаємодії їх один з одним, і синхронна прецесія зникає. Проте цього часу цілком достатньо, аби зареєструвати сигнал і визначити частоту прецесії, що пов’язана з напруженістю МПЗ співвідношенням (91). Згодом, внаслідок хаотичного теплового руху атомів речовини, відбувається повне руйнування набутої ядерної намагніченості, і сумарний вектор ядерної намагніченості прямує до свого початкового значення : .
|