Введение. Оружие массового поражения (ОМП), или оружие большой поражающей способности, предназначается для нанесения массовых потерь и разрушений
Оружие массового поражения (ОМП), или оружие большой поражающей способности, предназначается для нанесения массовых потерь и разрушений. К существующим видам ОМП относится ядерное, химическое и бактериологическое (биологическое) оружие. Научно-технический прогресс позволяет создать ОМП, основанное на качественно новых принципах (например, инфразвуковое, радиологическое, лучевое, этническое и др.). Кроме того, обычные виды оружия при использовании в них качественно новых элементов могут также приобрести свойства оружия массового поражения. Рассмотрим одно из видов оружия массового поражения – ядерное оружие. Ядерные боеприпасы (бомбы) основаны на принципе использования энергии цепной реакции деления ядер урана-235 или плутония-239, ядра которых легко расщепляются на две части от удара медленных нейтронов. Взрыв ядерного боеприпаса происходит следующим образом: на определённой высоте срабатывает дистанционный взрыватель, взрываются пороховые заряды, силой их взрыва полушария урана или плутония сближаются, при этом образуется критическая масса и происходит цепная реакция. При разрушении ядер урана или плутония выделяется огромное количество внутриядерной энергии в виде энергии взрыва. ^ Термоядерный боеприпас (бомба) содержит в себе все части ядерной бомбы, а кроме того, термоядерный заряд и природный уран-238. Взрыв термоядерной бомбы происходит в три стадии (трехступенчатая бомба) на основе реакций: деление – синтез – деление. ^ Нейтронные боеприпасы (с термоядерным зарядом малой мощности), поражающее действие которых в основном определяется воздействием потока быстрых нейтронов и гамма-лучей. Это так называемое «гуманное» оружие повышенной радиации планируется стратегами НАТО для поражения живой силы противника при максимальном сохранении материальных ценностей. ^ Высотный взрыв производится выше границы тропосферы Земли (выше 10 км). Основные поражающие факторы этого взрыва: воздушная ударная волна (на высоте до 30 км), рентгеновское излучение, проникающая радиация, световое излучение (на высоте 30 – 60 км), газовый поток, электромагнитный импульс, ионизация атмосферы (на высотах свыше 60 км). Применяется для поражения воздушных и космических целей и создания помех радиотехническим средствам. ^ Воздушный взрыв производится в атмосфере на высоте, при которой светящаяся область не касается поверхности земли (воды), но не выше 110 км. Основные поражающие факторы: воздушная ударная волна, проникающая радиация, световое излучение и электромагнитный импульс. Применяется для поражения воздушных и наземных объектов. Максимальная эффективность поражения наземных объектов ударной волной достигается выбором оптимальной высоты взрыва. ^ Наземный (надводный) взрыв – взрыв, произведенный на поверхности земли (воды) или на такой высоте, при которой огненный шар касается поверхности земли (воды). Поражающие факторы взрыва: ударная волна, световое излучение, проникающая радиация, электромагнитный импульс, обширные зоны радиоактивного заражения, а также ударные волны в грунте и воде. Этими взрывами разрушают прочные наземные (надводные) объекты, подземные и портовые сооружения. ^ Подземный (подводный) ядерный взрыв возможен на глубине, равной глубине проникания боеголовки или заблаговременного заложения ядерного фугаса в грунт (воду). Основные поражающие факторы: сейсмические волны в грунте и ударная волна в воде и более сильное радиоактивное заражение местности (акватории) в районе взрыва. При подводном взрыве образуются гравитационные волны, которые не оказывают разрушающего воздействия в открытом море, однако при подходе к берегу и при выходе на поток воды, распространяющийся на большие расстояния. Подземные взрывы могут применять для разрушения особо прочных подземных сооружений, устройства завалов в горах, разрушения плотин и т. д. Подводным взрывом поражают подводные и надводные объекты, разрушают гидротехнические и портовые сооружения. ^ Ударная волна – это область резкого сжатия среды, которая в виде сферического слоя распространяется во все стороны от места взрыва со сверхзвуковой скоростью. В зависимости от среды распространения различают ударную волну в воздухе, в воде или грунте (сейсмовзрывные волны). ^ Ударная волна в воздухе образуется за счет колоссальной энергии, выделяемой в зоне реакции, где исключительно высокая температура, а давление достигает миллиардов атмосфер. Сжатие и перемещение воздуха происходит от одного слоя к другому во все стороны от центра взрыва, образуя воздушную ударную волну. Вблизи центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. С увеличением расстояния от места взрыва скорость распространения волны быстро падает, а ударная волна ослабевает; на больших удалениях ударная волна переходит, по-существу, в обычную акустическую волну и скорость ее распространения приближается к скорости звука в окружающей среде, т. е. к 340 м/с. ^ Ударная волна в воде при подводном ядерном взрыве качественно напоминает ударную волну в воздухе. Однако подводная ударная волна отличается от воздушной ударной волны своими параметрами. На одних и тех же расстояниях давление во фронте ударной волны в воде гораздо больше, чем в воздухе, а время действия – меньше. При наземном ядерном взрыве часть энергии взрыва расходуется на образование волны сжатия в грунте. В отличие от ударной волны в воздухе она характеризуется менее резким увеличением давления во фронте волны, а также более медленным его ослаблением за фронтом. Давление во фронте волны сжатия уменьшается довольно быстро с удалением от центра взрыва, и на больших расстояниях волна сжатия становится подобной сейсмической волне. При взрыве ядерного боеприпаса в грунте основная часть энергии взрыва передается окружающей массе грунта и производит мощное сотрясение грунта, напоминающее по своему действию землетрясение. ^ Световое излучение. По своей природе световое излучение ядерного взрыва – совокупность видимого света и близких к нему по спектру ультрафиолетовых и инфракрасных лучей. Источник светового излучения – светящаяся область взрыва, состоящая из нагретых до высокой температуры веществ ядерного боеприпаса, воздуха и грунта (при наземном взрыве). Поражающее действие светового излучения характеризуется световым импульсом. ^ Световым импульсом называется отношение количества световой энергии к площади освещенной поверхности, расположенной перпендикулярно распространению световых лучей. Световой импульс зависит от мощности и вида взрыва, расстояния от центра взрыва и ослабления светового излучения в атмосфере, а также от экранирующего воздействия дыма, пыли, растительности и т. д. При наземных и надводных взрывах световой импульс на тех же расстояниях меньше, чем при воздушных взрывах такой же мощности. Это объясняется тем, что световой импульс излучает полусфера, хотя и большего диаметра, чем при воздушном взрыве. При подземных или подводных взрывах поглощается почти все световое излучение. При ядерном взрыве на большой высоте рентгеновские лучи, излучаемые исключительно сильно нагретыми продуктами взрыва, поглощаются большими толщами разреженного воздуха. Поэтому температура огненного шара (значительно больших размеров, чем при воздушном взрыве) ниже. Независимо от причин возникновения, ожоги разделяют по тяжести поражения организма. ^ Ожоги первой степени выражаются в болезненности, покраснении и припухлости кожи. Они не представляют серьезной опасности и быстро вылечиваются баз каких-либо последствий. При ожогах второй степени образуются пузыри, заполненные белковой жидкостью; при поражении значительных участков кожи человек может потерять на некоторое время трудоспособность и нуждается в специальном лечении. Ожоги третьей степени характеризуются омертвлением кожи с частичным поражением росткового слоя. Ожоги четвертой степени: омертвление кожи более глубоких слоев тканей (подкожной клетчатки, мышц, сухожилий костей). ^ Проникающая радиация. Это один из поражающих факторов ядерного оружия, представляющий собой гамма-излучение и поток нейтронов, испускаемых в окружающую среду из зоны ядерного взрыва. При установлении допустимых доз излучения учитывают, что облучение может быть однократным или многократным. Однократным считается облучение, полученное за первые четверо суток. Облучение, полученное за время, превышающее четверо суток, является многократным. При однократном облучении организма человека в зависимости от полученной экспозиционной дозы различают четыре степени лучевой болезни. ^ Лучевая болезнь первой (легкой) степени возникает при общей экспозиционной дозе излучения 100 – 200 Р. Скрытый период может продолжаться две-три недели, после чего появляются недомогание, общая слабость, чувство тяжести в голове, стеснение в груди, повышение потливости, может наблюдаться периодическое повышение температуры. В крови уменьшается содержание лейкоцитов. Лучевая болезнь первой степени излечима. ^ Лучевая болезнь второй (средней) степени возникает при общей экспозиционной дозе излучения 200 – 400 Р. Скрытый период длится около недели. Лучевая болезнь проявляется в более тяжелом недомогании, расстройстве функций нервной системы, головных болях, головокружениях, вначале часто бывает рвота, понос, возможно повышение температуры тела; количество лейкоцитов в крови, особенно лимфоцитов, уменьшается более чем наполовину. ^ Лучевая болезнь третье (тяжелой) степени возникает при общей экспозиционной дозе 400 - 600 Р. Скрытый период – до нескольких часов. Отмечают тяжелое общее состояние, сильные головные боли, рвоту, понос с кровянистым стулом, иногда потерю сознания или резкое возбуждение, кровоизлияния в слизистые оболочки и кожу, некроз слизистых оболочек в области десен. Без лечения болезнь в 20 – 70 % случаев заканчивается смертью, чаще от инфекционных осложнений или кровотечений. При облучении экспозиционной дозой более 600 Р развивается крайне тяжелая четвертая степень лучевой болезни, которая без лечения обычно заканчивается смертью в течение двух недель. ^ Электромагнитный импульс. При взаимодействии мгновенного и захватного гамма-излучений с атомами и молекулами среды последним сообщаются импульсы энергии. Основная часть энергии расходуется на сообщение поступательного движения электронам и ионам, образовавшимся в результате ионизации. Возникающие кратковременные электрические и магнитные поля представляют собой электромагнитный импульс ядерного взрыва (ЭМИ). ^ Радиоактивное заражение возникает в результате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва. Радиоактивное заражение имеет ряд особенностей, отличающих его от других поражающих факторов ядерного взрыва. К ним относятся: большая площадь поражения – тысячи и десятки тысяч квадратных километров; длительность сохранения поражающего действия – дни, недели, а иногда и месяцы; трудности обнаружения радиоактивных веществ, не имеющих цвета, запаха и других внешних признаков. ^ 1.6. Очаг ядерного поражения Поражение людей и животных в очаге может быть от воздействия ударной волны, светового излучения, проникающей радиации и радиоактивного заражения, а также от воздействия вторичных факторов поражения. Степень разрушения элементов производственного комплекса объекта определяется в основном действием ударной волны, светового излучения, вторичных факторов поражения, а для некоторых объектов – также действием проникающей радиации и электромагнитного импульса. Характер воздействия каждого поражающего фактора на людей, животных и элементы производственного комплекса были рассмотрены в начале параграфа и в приложениях 3 – 5. Одновременное непосредственное и косвенное действие всех поражающих факторов ядерного взрыва на людей, оказавшихся в очаге, утяжеляет степень поражения. Такое одновременное действие может увеличить степень разрушений зданий, сооружений, вывод из строя оборудования и т. д. Однако соотношение отдельных видов поражений и разрушений непостоянно; в зависимости от конкретных условий, мощности и вида взрыва оно может меняться в широких пределах. Так, с увеличением мощности взрыва увеличивается площадь разрушений зданий и при прочих равных условиях поражается большее количество людей. В зависимости от метеорологических условий изменяется степень поражения световым излучением. При ядерных взрывах малой мощности, как уже отмечалось, воздействие проникающей радиации на людей значительнее, чем воздействие ударной волны и светового излучения. Размеры очага ядерного поражения в основном зависят от мощности, вида и рельефа местности. В качестве критерия для определения границ зон очага ядерного поражения принято избыточное давление во фронте ударной волны.
7.
Поскольку процесс формирования радиоактивных следов длится несколько часов, предварительно производят оценку радиационной обстановки по результатам прогнозирования радиоактивного заражения местности. Прогностические данные позволяют заблаговременно, т. е. до подхода радиоактивного облака к объекту, провести мероприятия по защите населения, рабочих, служащих и личного состава формирований, подготовке предприятия к переводу на режим работы в условиях радиоактивного заражения, подготовке противорадиационных укрытий и средств индивидуальной защиты. Прогнозирование радиационной обстановки позволяет с определенной точностью рассчитать движение радиоактивного облака и зоны радиоактивного заражения, заранее подать сигнал «Угроза радиоактивного заражения» и принять возможные меры защиты. При прогнозировании радиационной обстановки ставятся следующие задачи: нанести на карту предполагаемый след выпадения радиоактивных осадков, рассчитать возможные санитарные потери, допустимое время пребывания людей в различных зонах заражения и определить наиболее целесообразные действия войск и населения с тем расчетом, чтобы не допустить облучения в таких дозах, которые вызывают лучевую болезнь. 7.
Ликвидацию последствий в ядерном очаге поражения организуют командиры и штабы частей и соединений при участии всех служб (связи, химической, интендантской, продовольственной, медицинской, инженерной и др.). Вначале спасательные работы ведутся силами и средствами пострадавших частей, сохранивших способность выполнять какие-то работы. Затем в очаг высылаются специальные отряды или команды, в состав которых входят также силы и средства медицинской службы. Главными задачами спасательных работ являются: тушение пожаров, расчистка подъездов и проходов в очаге, спасение людей из-под завалов укрытий, сооружений и поврежденной техники, оказание первой медицинской помощи и эвакуация, спасение боевой техники, ликвидация аварий трубопроводов, водопроводов, канализации, электроснабжения, проведения специальной обработки личного состава, дезактивации техники и другого имущества. Медицинская служба должна иметь необходимый резерв сил и средств (медицинского имущества и медицинских учреждений или подразделений) для соответствующего маневра и обеспечения работы по ликвидации последствий в ядерном очаге. ^ 1.9. Укрытие населения в защитных сооружениях Убежища представляют собой сооружения, обеспечивающее наиболее надежную защиту укрываемых в них людей от воздействия всех поражающих факторов ядерного взрыва, отравляющих веществ и бактериальных средств, высоких температур и вредных газов в зонах пожаров, а также от обвалов и обломков разрушенных зданий (сооружений) при взрывах. ^ Противорадиационные укрытия. При радиоактивном заражении местности ПРУ защищают людей от внешнего гамма- излучения и непосредственного попадания радиоактивной пыли в органы дыхания, на кожу и одежду, а также от светового излучения ядерного взрыва. При определенной прочности конструкций ПРУ могут частично защищать людей от воздействия ударной волны ядерного взрыва и обломков разрушающихся зданий. Кроме того, - от непосредственного попадания на кожу и одежду капель отравляющих веществ и аэрозолей бактериальных средств. ^ Простейшие укрытия – щели. Требованиям простейших укрытий в наибольшей степени отвечает обыкновенная, отлично зарекомендовавшая себя во время Великой Отечественной войны всем известная щель. Роль и значение щели в войне с применением ядерного оружия не снижается, а, наоборот повышается. Она может быть открытая и перекрытая, с одеждой крутостей и без нее.
|