МЕТОДИКА ЭКСПЕРИМЕНТА
ИЗМЕРЕНИЯ УГЛОВОЙ СКОРОСТИ
Цель работы: ознакомиться со способами измерения угловой скорости, измерить угловую скорость вращения электромотора в зависимости от приложенного напряжения. МЕТОДИКА ЭКСПЕРИМЕНТА В данной работе необходимо измерить разными способами угловую скорость диска, жестко закрепленного на валу электромотора постоянного тока, в зависимости от приложенного к мотору напряжения.
(1)
Существует несколько методов, с помощью которых частота вращения может быть определена со значительно большей точностью. Одним из них является стробоскопический метод, в котором используется так называемый стробоскопический эффект. Различают два стробоскопических (стробос - вихрь, скопео - смотрю) эффекта. Первый из них состоит в том, что быстрая смена отдельных фаз движения тела воспринимается глазом как непрерывное движение. Это связано с тем, что клетки сетчатой оболочки глаза сохраняют зрительный образ в течение примерно 0,1с. после исчезновения зримого объекта. И, если время между появлениями отдельных изображений меньше 0,1с, образы сливаются, и возникает иллюзия непрерывности движения. На этом эффекте основаны кинематограф и телевидение. Второй стробоскопический эффект состоит в том, что при определенных условиях возникает иллюзия не движения, а, наоборот, покоя предмета, который на самом деле движется. Если какой-нибудь объект совершает периодическое движение (колеблется или вращается), то при освещении его прерывистыми световыми вспышками, следующими через равные промежутки времени, предмет будет казаться неподвижным, если частота вспышек в точности равна частоте колебаний вращения. Объясняется это тем, что глаз будет отмечать положение тела в момент световой вспышки и сохранят этот зрительный образ до следующей вспышки, которая при равных частотах вспышек и вращения застанет предмет на том же месте. Когда частота вспышек в целое число раз больше частоты вращения картина тоже будет неподвижной, но теперь будет видно несколько “экземпляров” предмета. Если отношение частоты вспышек к частоте оборотов равно k, то за каждый оборот будет происходить k вспышек, которые застанут предмет в разных положениях, отличающихся на угол 2 p /k. Равенство всех углов означает, что тело вращается с постоянной угловой скорость. Если частота вспышек не в точности равна или не в точности кратна частоте вращения тела, то оно будет казаться медленно вращающимся в ту, или другую сторону в зависимости от соотношения частот. Если частота вспышек намного больше частоты вращения или ей величины, каждая последующая вспышка будет освещать предмет в положении, когда он еще не сделал полного оборота, и он будет казаться вращающимся в сторону, противоположному реальному вращению тела. Наоборот, если частота вспышек несколько меньше частоты вращения тела, кажущееся движение будет совпадать с направлением истинным. Такие стробоскопические иллюзии иногда наблюдаются в кино, когда, например, частота следования кинокадров больше или меньше частоты вращения колес. Стробоскопический метод измерения частоты вращения обладает одним существенным недостатком, заключающийся в том, что одну и ту неподвижную картину можно наблюдать при различных значениях k. Напомним, что k есть отношение числа вспышек к числу оборотов предмета. Эта величина может быть как больше, так и меньше единицы. Если число вспышек больше числа оборотов, то k>1. Наоборот, если число вспышек меньше числа оборотов, то k<1. Пусть наблюдается один “экземпляр” предмета. Это возможно, если за время, равное периоду следования вспышек, предмет повернулся на угол 2 p, 4 p, 6 pи т.д. (в общем случае этот угол равен 2 p m, где m=1,2,3,¼) т.е. совершил 1,2,3,¼ оборотов (в общем случае m оборотов). Другими словами, это возможно при k=1, 1/2,1/3, ¼ (в общем случае k=1/m). Итак, если при освещении вращающегося объекта импульсным осветителем наблюдается один “экземпляр” предмета, то вывод, который из этого можно сделать заключается лишь в том, что число оборот или равно числу вспышек или в целое число раз меньше числа вспышек. Такая же неоднозначность при наблюдении двух “экземпляров” предмета. Аналогично можно показать, что такая ситуация возможна, если k=2,2/3,2/5 и т.д. Нетрудно показать, что неоднозначность определения числа оборотов стробоскопическим методом существует при наблюдении любой неподвижной картинки. Такого недостатка лишен другой метод бесконтактного измерения частоты вращения, идея которого заключается в следующем. На вращающийся предмет перпендикулярно оси вращения жестко укрепляется диск с отверстиями, равномерно расположенными по его краю. При своем движении эти отверстия периодически перекрывают световой пучок, направленный на фотодатчик. Тем самым фотодатчик генерирует последовательность импульсов, частота которых определяется частотой вращения и числом отверстий. Количество импульсов в единицу времени подсчитывается специальным счетчиком. Результат высвечивается на цифровом табло. Приборы, основанные на этом методе, называются цифровыми тахометрами. Обычно число отверстий на диске и время счета импульсов выбирают таким, чтобы число подсчитанных импульсов за время счета было равно числу оборотов в минуту. Так, если время счета импульсов равно 1с, то число отверстий на диске должно быть равно 60. Это можно пояснить на следующем простом примере. Пусть диск совершает 1 оборот в секунду. Тогда число импульсов, которые подсчитает прибор за 1 секунду и высветит на табло будет равно 60, что, очевидно, есть число оборотов диска в минуту. Данный способ определения числа оборотов лишен недостатков двух предыдущих способов, но применение его сопряжено с иногда непреодолимыми техническими сложностями трудностями, связанными с размещением диска на вращающемся объекте.
Блок-схема установки, используемой в данной работе, изображена на рис.2. Электромотор постоянного тока 3 питается от выпрямительного устройства 1, преобразующего переменное напряжение сети в постоянное напряжение, величина которого плавно регулируется. Напряжение на моторе измеряется вольтметром 2. На валу мотора укреплен легкий диск 4 с белой радиальной полосой, необходимой для наблюдения стробоскопического эффекта. По краю диска высверлены 60 равноотстоящих друг от друга отверстий, необходимых для определения числа оборотов при помощи цифрового тахометра. Освещение диска 4 производится импульсным осветителем 6 стробоскопического тахометра 5, с которым осветитель связан гибким шнуром. Отверстия на диске 4 пересекают ось фотодатчика 7, который формирует импульсы, поступающие на цифровой тахометр 8.
(2)
где Ux - измеряемое напряжение; Uk - предельное напряжение в выбранном диапазоне (в этой работе 10В или 100В).
После калибровки для измерения напряжения постоянного тока следует установить переключатель " Предел измерения " в положение, соответствующее величине измеряемого напряжения, а переключатель " Род работы " в положение " U - 1S ". Подать измеряемое напряжение на гнезда "
Измерение частоты вращения диска (точнее вала мотора, на котором укреплен диск) производится так. Осветив диск выносным осветителем, подбирают, вращая ручки 3 и 4, частоту вспышек так, чтобы белая черта на диске казалась неподвижной. Можно выбрать и такую частоту вспышек, при которой видно несколько неподвижных белых полос с одинаковыми углами между ними. В этом случае, если точно известно, что число вспышек больше числа оборотов, отсчитанная по прибору частота вспышек больше частоты вращения в число раз равное числу неподвижных полос. В работе также используется цифровой тахометр ТЦ-3М. Пределы измерения его - 10 ¸ 20000об/мин, погрешность измерения числа оборотов - ±3об/мин. Измерения числа оборотов при помощи этого прибора чрезвычайно просто. На его табло, сразу после включения и 10-ти минутного прогрева, высвечивается периодически в течение 1секунды значение числа оборотов в предыдущую секунду.
|