Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон обращения геометрического воздействия





Для более детального выяснения механизма перехода потока через скорость звука рассмотрим совместно уравнения I начала термодинамики для потока, уравнение неразрывности и уравнение адиабатического процесса течения, которое в данном случае удобнее представить в дифференциальной форме при принятых выше допущениях. Имеем

Из первого и третьего уравнений находим

Подставив это отношение в уравнение неразрывности и учтя, что , где a – скорость звука, получаем

Отношение скорости потока в данном сечении канала к местной скорости звука называется числом Маха,

.


С учетом этого определения получаем выражение

известное под названием закона обращения геометрического воздействия.

Закон обращения геометрического воздействия позволяет выяснить общую конфигурацию сопел, обеспечивающую полное расширение газа до давления среды за соплом, и, как следствие этого, получить максимально возможную скорость на выходе. Отметим прежде всего, что площадь поперечного сечения сопла f и скорость потока w положительны, дифференциал d w положителен для сопел по определению. Тогда из закона обращения геометрического воздействия следует, что знак d f т.е. расширение или сужение поперечного сечения сопла, будет определяться соотношением между скоростью потока и местной скоростью звука. Рассмотрим три случая.

1. Скорость потока на входе меньше местной скорости звука, т.е. w<a, Ma<1, Ma2–1<0, откуда следует d f < 0, т.е. для ускорения дозвукового потока сопло должно быть суживающимся.

2. Скорость потока на входе равна местной скорости звука, т.е. w=a, Ma=1, Ma2–1=0, откуда следует d f = 0, т.е. скорость потока становится равной местной скорости звука. Таким образом, скорость потока становится равной местной скорости звука в минимальном сечении сопла.

3. Скорость потока на входе больше местной скорости звука, т.е. w>a. Тогда Ma>1, Ma2–1>0, откуда следует d f > 0, т.е. для ускорения сверхзвукового потока сопло должно быть расширяющимся.

Все эти случаи показаны на рис.7.3.

 
 

 
 

Сопло, позволяющее ускорить дозвуковой поток до сверхзвуковых скоростей, должно, таким образом, состоять из двух участков – суживающегося, где ускорение происходит до местной скорости звука, и расширяющегося насадка, где поток приобретает сверхзвуковую скорость. Такое комбинированное сопло было предложено французским инженером П.Лавалем и носит его имя. Конфигурация сопла Лаваля приведена на рис.7.4.







Дата добавления: 2015-08-12; просмотров: 2328. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия