Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лист 4. Пересечение плоскостей





Согласно варианту построить:

- проекции двух треугольников;

- определить видимость сторон;

- линию пересечения треугольников;

- натуральную величину одного из треугольников.

На чертеже Пересечение плоскостей студент учится графическому решению позиционных задач. Под позиционными понимаются задачи, решение которых позволяет получить ответ о принадлежности элемента (точки) или подмножества (линии) множеству (поверхности). К позиционным относят также задачи на определение общих элементов, принадлежащих различным геометрическим фигурам. Данные для позиционной задачи представлены в таблице 5.

Линию пересечения заданных плоскостей можно найти:

- используя вспомогательные секущие плоскости;

- дважды применив решение задачи на пересечение прямой с плоскостью;

- применив способ замены плоскостей проекции, введя новую плоскость проекций, перпендикулярную к одной из заданных плоскостей.

Первый вариант решения обычно применяется тогда, когда проекции прямых, задающих плоскости на чертеже, не пересекаются. При этом используются плоскости уровня.

Третий вариант в ряде случаев увеличивает число графических построений на чертеже.

Решение необходимо выполнить по второму варианту. Для построения линии пересечения двух плоскостей необходимо найти какие-либо две точки, каждая из которых принадлежит обеим плоскостям. Эти точки определяют линию пересечения плоскостей.

Пример выполнения листа Пересечение плоскостей представлен на рисунке А.3.

Алгоритм решения:

1. Методом конкурирующих точек определить две стороны, участвующие в пересечении. На рисунке А.3 такими сторонами являются АВ и KD. Далее найти точку пересечения стороны АВ с плоскостью треугольника DEK.

2. Сторону АВ заключить во вспомогательную горизонтально-проецирующую плоскость . Через фронтальную проекцию стороны А// В// провести фронтальный след фронтально проецирующей плоскости , тогда .

3. Найти линию пересечения плоскостей и D DEK. Горизонтальный след плоскости пересекает проекцию плоскости D D / E / K / в точках 2/ и 6 /. 2//–6 // - фронтальная проекция линии пересечения плоскостей и D DEK (так какфронтальный след фронтально проецирующей плоскости обладает собирательным свойством). Для нахождения горизонтальной проекции линии пересечения данных плоскостей (2/–6 /) необходимо из фронтальной проекции точек 2// и 6 //провести линии связи до пересечения с горизонтальными проекциями сторон D /E / и K /E / соответственно.

4. Прямые AB и 2–6 лежат в одной вспомогательной плоскости и не параллельны. Горизонтальная проекция линии пересечения плоскостей 2/–6 /пересекает горизонтальную проекцию А / В / в точке N /, которая и является горизонтальной проекцией точки пересечения стороны AB с плоскостью D DEK. С помощью линии связи найти фронтальную проекцию N //.

5. Аналогично, используя горизонтально проецирующую плоскость , определить точку пересечения стороны KD с плоскостью треугольника ABC (точка М).

6. Соединив одноимённые проекции точек M и N, определить горизонтальную (M /N /)и фронтальную (M //N //)проекции линии пересечения треугольников.

7. Видимость сторон треугольников определить способом конкурирующих точек. Видимые отрезки сторон треугольников выделить сплошными контурными линиями, невидимые следует показать штриховыми и тонкими линиями.

Натуральную величину треугольника АВС можно найти:

- методом прямоугольного треугольника;

- способом замены плоскостей;

- способами плоскопараллельного перемещения.

Определение натуральной величины необходимо выполнить по первому варианту. Для этого следует методом прямоугольного треугольника последовательно определить натуральную величину каждой стороны треугольника АВС. Зная натуральную величину сторон А/В 0, В/С 0, С/А 0, на свободном поле листа можно построить натуральную величину треугольника АВС.

Таблица 5







Дата добавления: 2015-08-12; просмотров: 744. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия