Примеры. Пример 1. Выбор стратегии
Пример 1. Выбор стратегии. Матрица некоторой игры имеет вид Найдите оптимальные стратегии игроков. Решение. В этой игре игрок 1 имеет три возможные стратегии: а 1, а 2, а 3 из, а игрок 2 — четыре возможные стратегии: b 1, b 2, b 3, b 4. Рассмотрим процесс принятия игроками решения (предполагается, что они действуют рационально). Взглянув на таблицу, можно заметить, что если игрок 1 не знает, как поступит его противник, то, действуя наиболее целесообразно и считая, что противник будет действовать подобным же образом, он выберет стратегию а 2, которая гарантирует ему наибольший из трех возможных наименьших выигрышей: 9, 13, 8. Другими словами, игрок 1 руководствуется принципом максиминного выигрыша. Этот выигрыш a = аij есть нижняя цена игры. Для нашего примера a = 13. Игрок 2 рассуждает аналогично: если он выберет стратегию b 1,,то потеряет самое большее 23, если стратегию b 2, то — 40, и т.д. В результате он выберет стратегию b 3, которая гарантирует ему наименьший из четырех возможных проигрышей: 23, 40, 13, 25. Принято говорить, что игрок 2 руководствуется принципом минимаксного проигрыша. Этот проигрыш b = аij есть верхняя цена игры. Для нашей матрицы b = 13. Ситуация (a 2, b 3) есть седловая точка, и a = b = 13 есть цена игры. При наличии седловой точки ни одному из участников игры невыгодно отклоняться от своей минимаксной стратегии: он будет наказан противником тем, что получит меньший выигрыш. Пример 2. Где строить? Две конкурирующие крупные торговые фирмы Ф1 и Ф2 планируют построить в одном из четырех небольших городов Г 1, Г 2, Г 3 и Г 4, лежащих вдоль автомагистрали, по одному универсаму. Взаимное расположение городов, расстояние между ними и численность населения показаны на рис. 1. Рис. 1 Прибыль каждой фирмы зависит от численности населения городов и степени удаленности универсамов от места жительства потенциальных покупателей. Специально проведенное исследование показало, что прибыль в универсамах будет распределяться между фирмами следующим образом: Например, если универсам фирмы Ф 1 расположен к городу Г 1ближе универсама фирмы Ф 2, то прибыль от покупок, сделанных жителями данного города, распределится следующим образом: 75% получит Ф 1, остальное — Ф 2. Представьте описанную ситуацию как игру двух лиц. В каких городах фирмам целесообразно построить свои универсамы? Решение. Составим платежную матрицу игры, в которой игроком 1 будет фирма Ф 1, а игроком 2 — фирма Ф 2. Стратегии обоих игроков: строить свой универсам в городе Г 1, в городе Г 2 и т.д. Элементы матрицы — прибыль фирмы Ф 1 (в тыс. руб.), которая, как предполагается, пропорциональна (причем с одним и тем же коэффициентом) числу покупателей. Величина указанного коэффициента пропорциональности для выбора оптимального места размещения универсамов значения не имеет, поэтому примем его равным единице. Платежная матрица имеет вид Рассмотрим примеры расчета значений элементов (Г 1, Г 2) и (Г 3, Г 4) матрицы. Ситуация (Г 1, Г 2) означает, что фирма Ф 1, строит универсам в городе Г 1, а фирма Ф2 — в городе Г 2. Число покупателей фирмы Ф 1 складывается из покупателей четырех городов. Для ситуации (Г 1, Г 2) число покупателей из Г 1: 0,75×30, из Г 2: 0,45×50, из Г 30,45×40, из Г 4: 0,45×30, т.е. в сумме 76,5 тыс. руб. Для ситуации (Г 3, Г 4) число покупателей из Г1: 0,75×30, из Г 2: 0,75×50, из Г 3: 0,75×40, из Г 4: 0,45×30, т.е. в сумме 103,5 тыс. руб. Элементы матрицы выигрышей фирмы Ф 2 — дополнения до числа 150 (общее число жителей в четырех городах). Таким образом, имеет место игра двух лиц с ненулевой постоянной суммой, оптимальные стратегии которой те же, что и для соответствующей игры с нулевой суммой. Полученная платежная матрица имеет седловую точку (Г 2, Г 2). Соответствующий элемент матрицы равен 90. Таким образом, обеим фирмам следует строить свои универсамы в одном и том же городе Г 2, при этом прибыль фирмы Ф 1составит 90 тыс., а фирмы Ф 2 — 60 тыс. руб. Пример 3. Двухпальцевая «игра морра». Каждый игрок показывает один или два пальца и называет число пальцев, которое, по его мнению, показал его противник (ни один из игроков не видит, какое число пальцев на самом деле показывает его противник). Если один из игроков угадывает правильно, он выигрывает сумму, равную сумме числа пальцев, показанных им и его противником. В противном случае (если никто не угадывает) — ничья. Если оба угадали, то игроки платят друг другу одинаковую сумму, в результате также ничья. Вопросы: 1. Существует ли в данной игре седловая точка в чистых стратегиях? 2. Кто из игроков в среднем выигрывает и сколько? 3. Как часто игрок 1 должен говорить, что его противник показал два пальца? 4. Как часто игрок 2 должен показывать один палец? Решение. Прежде всего определим стратегии игроков и построим платежную матрицу. Стратегиями игрока 1 (строки таблицы) являются четыре пары чисел. Первое число каждой пары — это число пальцев, показанное им, второе — число пальцев, которое, как он предполагает, показал его противник. Такие же стратегии имеет игрок 2. Платежная матрица размером 4 х 4 и другая информация представлены в следующей таблице: Нижняя цена игры a = –2, верхняя цена игры b = 2. Как видим, a ¹ b, поэтому седловой точки не существует и решение в чистых стратегиях отсутствует. Для решения данной игры построим соответствующую задачу линейного программирования. Для этого сначала преобразуем платежную матрицу таким образом, чтобы все ее элементы были положительными. Максимальное по абсолютной величине значение неположительного элемента платежной матрицы равно 4, поэтому к матрице достаточно прибавить число 5: Оптимальная стратегия игрока 1 находится решением следующей задачи линейного программирования [см. (1)]: Используя пакет POMWIN, исходную информацию для решения этой задачи можно представить в виде следующей таблицы: Получаем следующий результат: Решение (в нижней строке): Оптимальное значение целевой функции равно 0,2. В последнем столбце — двойственные оценки. Переходя к переменным исходной задачи и учитывая, что v = 1/(x 1 + х 2 + х 3 + х 4) = 5 и pi = хi v, получаем: p 1 = 0, р 2 = 0,5715, p 3 = 0, p 4 = 0,4285. Это означает, что при многократном повторении игры первая стратегия (1, 1) и третья стратегия (2,1) игроком 1 не должны использоваться; вторая стратегия (1,2) должна использоваться с частотой 0,5715, четвертая стратегия (2, 2) — с частотой 0,4285. Аналогично определяем оптимальную стратегию игрока 2: т.е. игрок 2 должен использовать лишь свою вторую стратегию (1,2) с частотой 0,5715 и третью стратегию (2, 1) с частотой 0,4285. Так как исходная матрица была увеличена на 5, получаем, что цена первоначальной игры равна 0 (5 — 5). Таким образом, исход игры — ничья. Ответы: 1. Нет, не существует. 2. Ничья. 3. Всегда. 4. 0,572. Пример 4. Доминирование стратегий. Платежная матрица для двух игроков имеет вид Преобразуйте игру, исключив доминируемые стратегии. Решение. Для игрока 1: вторая стратегия (строка 2 матрицы) доминирует четвертую и шестую стратегии, поэтому четвертую и шестую строки можно вычеркнуть. Для игрока 2: третья стратегия (столбец 3) доминирует четвертую, поэтому четвертый столбец можно вычеркнуть, и т.д. Результирующая матрица имеет вид
|