Студопедия — Примеры. Пример 1. Выбор стратегии
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. Пример 1. Выбор стратегии






Пример 1. Выбор стратегии. Матрица некоторой игры имеет вид

Найдите оптимальные стратегии игроков.

Решение. В этой игре игрок 1 имеет три возможные страте­гии: а 1, а 2, а 3 из, а игрок 2 — четыре возможные стратегии: b 1, b 2, b 3, b 4.

Рассмотрим процесс принятия игроками решения (предпола­гается, что они действуют рационально). Взглянув на таблицу, можно заметить, что если игрок 1 не знает, как поступит его про­тивник, то, действуя наиболее целесообразно и считая, что про­тивник будет действовать подобным же образом, он выберет стра­тегию а 2, которая гарантирует ему наибольший из трех возмож­ных наименьших выигрышей: 9, 13, 8. Другими словами, игрок 1 руководствуется принципом максиминного выигрыша. Этот выигрыш a = аij есть нижняя цена игры. Для нашего примера a = 13.

Игрок 2 рассуждает аналогично: если он выберет стратегию b 1,,то потеряет самое большее 23, если стратегию b 2, то — 40, и т.д. В результате он выберет стратегию b 3, которая гарантирует ему наименьший из четырех возможных проигрышей: 23, 40, 13, 25. Принято говорить, что игрок 2 руководствуется принципом мини­максного проигрыша. Этот проигрыш b = аij есть верхняя цена игры. Для нашей матрицы b = 13.

Ситуация (a 2, b 3) есть седловая точка, и a = b = 13 есть цена игры.

При наличии седловой точки ни одному из участников игры невыгодно отклоняться от своей минимаксной стратегии: он бу­дет наказан противником тем, что получит меньший выигрыш.

Пример 2. Где строить?

Две конкурирующие крупные торговые фирмы Ф1 и Ф2 пла­нируют построить в одном из четырех небольших городов Г 1, Г 2, Г 3 и Г 4, лежащих вдоль автомагистрали, по одному универсаму. Взаимное расположение городов, расстояние между ними и чис­ленность населения показаны на рис. 1.

Рис. 1

Прибыль каждой фирмы зависит от численности населения городов и степени удаленности универсамов от места жительства потенциальных покупателей. Специально проведенное исследова­ние показало, что прибыль в универсамах будет распределяться между фирмами следующим образом:

Например, если универсам фирмы Ф 1 расположен к городу Г 1ближе универсама фирмы Ф 2, то прибыль от покупок, сделанных жителями данного города, распределится следующим образом: 75% получит Ф 1, остальное — Ф 2.

Представьте описанную ситуацию как игру двух лиц.

В каких городах фирмам целесообразно построить свои уни­версамы?

Решение. Составим платежную матрицу игры, в которой иг­роком 1 будет фирма Ф 1, а игроком 2 — фирма Ф 2. Стратегии обо­их игроков: строить свой универсам в городе Г 1, в городе Г 2 и т.д. Элементы матрицы — прибыль фирмы Ф 1 (в тыс. руб.), которая, как предполагается, пропорциональна (причем с одним и тем же коэффициентом) числу покупателей. Величина указанного коэф­фициента пропорциональности для выбора оптимального места размещения универсамов значения не имеет, поэтому примем его равным единице.

Платежная матрица имеет вид

Рассмотрим примеры расчета значений элементов (Г 1, Г 2) и (Г 3, Г 4) матрицы.

Ситуация (Г 1, Г 2) означает, что фирма Ф 1, строит универсам в городе Г 1, а фирма Ф2 — в городе Г 2. Число покупателей фирмы Ф 1 складывается из покупателей четырех городов. Для ситуации (Г 1, Г 2) число покупателей из Г 1: 0,75×30, из Г 2: 0,45×50, из Г 30,45×40, из Г 4: 0,45×30, т.е. в сумме 76,5 тыс. руб. Для ситуации (Г 3, Г 4) число покупателей из Г1: 0,75×30, из Г 2: 0,75×50, из Г 3: 0,75×40, из Г 4: 0,45×30, т.е. в сумме 103,5 тыс. руб. Элементы мат­рицы выигрышей фирмы Ф 2 — дополнения до числа 150 (общее число жителей в четырех городах). Таким образом, имеет место игра двух лиц с ненулевой постоянной суммой, оптимальные стратегии которой те же, что и для соответствующей игры с ну­левой суммой.

Полученная платежная матрица имеет седловую точку (Г 2, Г 2). Соответствующий элемент матрицы равен 90.

Таким образом, обеим фирмам следует строить свои универ­самы в одном и том же городе Г 2, при этом прибыль фирмы Ф 1составит 90 тыс., а фирмы Ф 2 — 60 тыс. руб.

Пример 3. Двухпальцевая «игра морра».

Каждый игрок показывает один или два пальца и называет число пальцев, которое, по его мнению, показал его противник (ни один из игроков не видит, какое число пальцев на самом деле показывает его противник). Если один из игроков угадывает правильно, он выигрывает сумму, равную сумме числа пальцев, по­казанных им и его противником. В противном случае (если ни­кто не угадывает) — ничья. Если оба угадали, то игроки платят друг другу одинаковую сумму, в результате также ничья.

Вопросы:

1. Существует ли в данной игре седловая точка в чистых стра­тегиях?

2. Кто из игроков в среднем выигрывает и сколько?

3. Как часто игрок 1 должен говорить, что его противник по­казал два пальца?

4. Как часто игрок 2 должен показывать один палец?

Решение. Прежде всего определим стратегии игроков и по­строим платежную матрицу.

Стратегиями игрока 1 (строки таблицы) являются четыре пары чисел. Первое число каждой пары — это число пальцев, показан­ное им, второе — число пальцев, которое, как он предполагает, показал его противник. Такие же стратегии имеет игрок 2.

Платежная матрица размером 4 х 4 и другая информация пред­ставлены в следующей таблице:

Нижняя цена игры a = –2, верхняя цена игры b = 2.

Как видим, a ¹ b, поэтому седловой точки не существует и ре­шение в чистых стратегиях отсутствует. Для решения данной игры построим соответствующую задачу линейного программирования. Для этого сначала преобразуем платежную матрицу таким обра­зом, чтобы все ее элементы были положительными. Максималь­ное по абсолютной величине значение неположительного элемента платежной матрицы равно 4, поэтому к матрице достаточно при­бавить число 5:

Оптимальная стратегия игрока 1 находится решением следу­ющей задачи линейного программирования [см. (1)]:

Используя пакет POMWIN, исходную информацию для реше­ния этой задачи можно представить в виде следующей таблицы:

Получаем следующий результат:

Решение (в нижней строке):

Оптимальное значение целевой функции равно 0,2.

В последнем столбце — двойственные оценки. Переходя к переменным исходной задачи и учитывая, что v = 1/(x 1 + х 2 + х 3 + х 4) = 5 и pi = хi v, получаем:

p 1 = 0, р 2 = 0,5715, p 3 = 0, p 4 = 0,4285.

Это означает, что при многократном повторении игры первая стратегия (1, 1) и третья стратегия (2,1) игроком 1 не должны ис­пользоваться; вторая стратегия (1,2) должна использоваться с ча­стотой 0,5715, четвертая стратегия (2, 2) — с частотой 0,4285.

Аналогично определяем оптимальную стратегию игрока 2:

т.е. игрок 2 должен использовать лишь свою вторую стратегию (1,2) с частотой 0,5715 и третью стратегию (2, 1) с частотой 0,4285.

Так как исходная матрица была увеличена на 5, получаем, что цена первоначальной игры равна 0 (5 — 5). Таким образом, исход игры — ничья.

Ответы: 1. Нет, не существует. 2. Ничья. 3. Всегда. 4. 0,572.

Пример 4. Доминирование стратегий.

Платежная матрица для двух игроков имеет вид

Преобразуйте игру, исключив доминируемые стратегии.

Решение. Для игрока 1: вторая стратегия (строка 2 матрицы) доминирует четвертую и шестую стратегии, поэтому четвертую и шестую строки можно вычеркнуть. Для игрока 2: третья страте­гия (столбец 3) доминирует четвертую, поэтому четвертый стол­бец можно вычеркнуть, и т.д.

Результирующая матрица имеет вид

 

 







Дата добавления: 2015-08-12; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2024 год . (0.03 сек.) русская версия | украинская версия