Влияние примесей на процесс декарбонизации карбонатного сырья
Примеси, содержащиеся в известняках, мелах и доломитах, можно классифицировать на гомогенные, когда глина, ил и песок (кварц или другие разновидности кремнезема), загрязняющие породу, отлагались одновременно с карбонатами и поэтому равномерно распределены по всей толще сырья, или как гетерогенные в случае их нахождения в трещинах и промежутках между пластами. Последние могут включать кремневые плиты и конкреции, прослойки песка, сланца или мелкозернистого песчаника, заключенные в известняках. Они являются источником SiO2 и Al2O3 - главных примесей в известняке. Другими источниками кремнезема служат полевые шпаты, слюда, тальк и серпентин. Доля этих примесей составляет от их общего количества 85-95%. Влияние примесей на процесс спекания сводится к тому, что образующиеся с их участием легкоплавкие соединения заполняют межкристальные поры, способствуя или в некоторых случаях препятствуя спеканию и рекристаллизации. Щелочи встречаются в карбонатном сырье в неглинистых известняках в виде карбонатов и хлоридов натрия, калия и магния. Причем NaCl обычно встречается в высококальциевом известняке, а MgCl2 в доломитах. Оксиды натрия и калия значительно ухудшают спекание несмотря на то, что содержание расплава в обжигаемом материале увеличивается. В то же время в присутствии NaCl кристаллы СаО растут значительно быстрее, достигая при 1200°С размера ~ 8 мкм, т. е. примерно в 4 раза большего, чем при отсутствии хлорида. Железосодержащие примеси также практически всегда присутствуют в карбонатном сырье. Ионы Fe2+ равномерно распределены в известняках и, замещая Са2+ и Mg2+, образуют карбонат железа. Другим источником железа, кроме доломитовых известняков, могут быть неравномерно рассеянные в породе зерна минералов, чаще - пирита и лимонита, реже магнетита и гематита. Оксиды железа и алюминия, в отличие от щелочных оксидов, наоборот, способствуют спеканию в результате понижения температуры образования жидкой фазы. В системе CaO - Fe2О3 образуются Огромное влияние оксид железа оказывает на стойкость футеровки печи, особенно шамотной. Еще более негативное влияние оказывает FeO, который может образовываться в результате восстановления Fe2О3 оксидом углерода в печи. Оксид Fe2+ способен образовывать чрезвычайно легкоплавкие соединения, как, например, файялит 2FeО · SiО2 (t пл = 1065°С). Глинозем, по некоторым данным, вступает в реакцию с СаО в интервале температур 500-900°С. Начиная с 1000°С реакция идет с большой скоростью с образованием сначала моноалюмината кальция СаО · Al2O3, а затем по мере дальнейшего повышения температуры соединение насыщается оксидом кальция и образуется 3СаО · Al2O3. Трехкальциевый алюминат обладает исключительной способностью переводить известь в малоактивную форму. Таким образом, соединения СаО с оксидами железа и алюминия наиболее легкоплавкие и образуют первые порции жидкой фазы. Кремнезем - постоянный спутник карбонатных пород, содержание его обычно находится в пределах 3-3,5%. Чем равномернее распределен SiO2 в известняке или меле, тем быстрее и полнее идет реакция с образованием СаО · SiO2 (t пл = 1540°С), 3СаО · 2SiO2 Кроме того, вышеуказанные силикаты, алюминаты и ферриты кальция в определенной мере влияют на свойства извести, т. к. они очень медленно реагируют с водой, что отражается на процессе гашения извести. Чем больше в извести этих соединений, тем медленнее и менее полно она гасится и тем менее пластичным получается из нее тесто. В отдельных случаях эти соединения способствуют образованию так называемой намертвообожженной извести. Кроме того, эти примеси способствуют уплотнению кусков обжигаемого материала, что приводит к уменьшению удельной поверхности, а это, в свою очередь, негативно сказывается на процессе гашения извести. Фосфор- и серосодержащие примеси встречаются в карбонатном сырье, как правило, в малых количествах, первая – в виде гидроксилапатита Са5ОН(РО4)3, вторая представлена гипсом, а также продуктами сульфатизации извести сернистым ангидритом, который образуется при сжигании твердого и жидкого топлива. Сернистый ангидрид поглощается известью значительно быстрее, чем СО2, и при более низких температурах (~ 400°С). До 550°С реакция протекает с образованием СаSO3, а при более высокой температуре образуются сульфид и сульфат: 4СаSO3 = 3CaSO4 + CaS. Гипс начинает разлагаться при 1100°С с небольшой скоростью. Основное влияние СаSO4 на обжиг заключается в понижении температуры образования жидкой фазы. Отрицательное влияние гипса состоит также и в том, что он сильно замедляет гидратацию извести. Фосфор- и серосодержащие примеси довольно равномерно распределены в породе, и, следовательно, их можно отнести к гомогенным. Частичная доломитизация известняков и мелов является причиной появления в их составе карбоната магния, количество которого может находиться в довольно широких пределах, доломитизированных (12-21%), магнезиальных (выше 21%) MgCO3. Температура разложения MgCO3, по данным разных авторов, колеблется от 402°С до 756°С. Такой широкий диапазон температур разложения связывают с различной структурой MgCO3 в природных карбонатах. Поскольку обжиг СаСО3 идет при более высоких температурах, чем разложение MgCO3, то образующийся MgO, проходя температурную зону 1100-1200°С, рекристаллизуется и поэтому пассивируется. В дальнейшем, при гашении такой извести, MgO не успевает гидратироваться и поэтому взаимодействие с водой может начаться уже в изделиях, например в силикатном кирпиче, при его запаривании в автоклаве (температура 170-180°С), а поскольку гашение сопровождается увеличением объема, то это, как правило, приводит к возникновению напряжений в изделиях и появлению трещин. Помимо этого, MgO заметно понижает температуру появления жидкой фазы и при этом растворяется в расплаве в значительном количестве. Следовательно, MgСO3 следует считать весьма нежелательной примесью в сырье. Особую группу примесей представляют органические включения в количестве около 1%. Однако они в отличие от неорганических примесей практически не оказывают влияния ни на процесс обжига, ни на качество целевого продукта, поскольку в ходе декарбонизации полностью сгорают, а содержание остатков их пиролиза ничтожно. Это касается и примесей, образующихся от сгорания жидкого топлива. И, наконец, роль водяных паров в печном пространстве на процесс декарбонизации. В целом действие водяных паров оказывает ускоряющее действие, т. к. своим присутствием в печи они снижают парциальное давление СО2, что способствует сдвигу равновесия реакции декарбонизации в сторону целевого продукта. Присутствие же больших количеств водяных паров, которые поступают в печное пространство не только из сырья, но и от сгорания природного газа при мокром способе производства извести, приводит к снижению концентрации СО2 в дымовых газах примерно до 25%, что существенно усложняет задачу по его использованию. В процессе обжига карбонатного сырья начиная с 350°С в печи протекает реакция карбонизации. Значительная скорость этой реакции достигается при 600°С и выше. При этом куски извести покрываются плотной коркой СаСО3. Наличие вышеуказанных примесей в карбонатном сырье, безусловно, сказывается как на процесс обжига, так и качественные показатели извести, но в неодинаковой мере. На стадии обжига природных карбонатов проявление примесей будет различным также и в зависимости от типа печного агрегата, в котором осуществляется декарбонизация.
|