Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы расчета - критерия.





1. При сопоставлении двух независимых серий наблюдений:

для частотных показателей:

для средних величин:

где и - частотные показатели в сравниваемых совокупностях; и - средние величины в сравниваемых совокупностях; и - ошибки репрезентативности показателей и средних величин в сравниваемых совокупностях.

Для оценки достоверности полученного - критерия при числе наблюдений больше 30 можно пользоваться следующей закономерностью:

если , то критерий достоверен, т.к. соответствует р ≥ 0,95 или р ≤ 0,05;

если , то критерий достоверен с большей степенью достоверности, т.к. соответствует р ≥ 0,99 или р ≤ 0,001.

Для числа наблюдений меньше 30 достоверность - критерия определяется по таблице Стьюдента. Для определения табличного значения - критерия необходимое число степеней свободы рассчитывается по формуле: , где - число наблюдений в одной совокупности; - число наблюдений в другой совокупности.

Для оценки различий в частотных показателях можно пользоваться таблицей, в которой приводятся минимальные значения разности двух частотных величин, достижения которой достаточно для двукратного превышения своей средней ошибки разности, что подтверждает достоверность различий. Для пользования таблицей достаточно знать меньшее значение из двух показателей и число наблюдений, которое должно быть не меньше 20.

2. При сопоставлении сопряженных совокупностей (двух серий наблюдений на одной и той же совокупности) («до» и «после») - критерий рассчитывается разностным методом:

,

где , , ,

Условные обозначения:

и - значения показателей в сравниваемых сериях наблюдений (до опыта и после опыта);

-средняя разность этих показателей;

- ошибка репрезентативности разности между показателями;

- стандартное отклонение разности между показателями;

n - число пар наблюдений.

3. Для сравнения степени однородности статистических групп используется критерий Фишера.

Его значение велико в ряде специальных разделов статистики, особенно в дисперсионном анализе. За - гипотезу в этом случае принимается признание равенства дисперсий в сравниваемых совокупностях. Критерий Фишера рассчитывается по формуле: , где и — дисперсии в сравниваемых совокупностях.

Таблица стандартных значений критерия Фишера учитывает объемы сравниваемых групп и выбираемый уровень значимости.







Дата добавления: 2015-08-12; просмотров: 711. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия