Студопедия — Металлургические процессы в зоне сварки плавлением
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Металлургические процессы в зоне сварки плавлением






Особенности металлургии сварки

 

Применение при сварке мощных высококонцентрированных и высокотемпературных источников теплоты приводит к расплавлению кромок свариваемого изделия, электродного (или присадочного) материала и покрытия или флюса. При этом образуется сварочная ванна расплавленного металла, окруженная относительно холодным металлом, иногда значительной толщины, и покрытая слоем расплавленного шлака.

Нагрев основного и присадочного металлов до расплавления с последующим охлаждением и затвердеванием сопровождается фазовыми переходами в веществе. При сварке плавлением происходит взаимодействие расплавленного металла со шлаком, а также с выделяющимися газами и воздухом. Это взаимодействие начинается с момента образования капель металла и продолжается до полного охлаждения наплавленного металла шва. Основными особенностями металлургических процессов, протекающих при сварке, являются:

высокая температура процесса;

небольшой объем ванны расплавленного металла;

большие скорости нагрева и охлаждения;

отвод теплоты в окружающий ванну основной металл;

интенсивное взаимодействие расплавляемого металла с газами и шлаками в зоне интенсивного нагрева;

быстрая кристаллизация сварочной ванны.

Все это усложняет получение сварного шва с заданными физико-механическими свойствами, которые предопределяются химическим составом металла шва и его структурой.

 

 

Химический состав металла шва и его свойства зависят от состава и доли участия в формировании шва основного и присадочного металлов, покрытия и флюсов, степени защиты от воздуха, приемов ведения и режимов сварки. Металл шва образуется в результате перемешивания в сварочной ванне основного и присадочного металлов и реакций взаимодействия нагретого металла с газами атмосферы и защитной средой.

 

Высокая температура источника тепла ускоряет физико-химические процессы, происходящие при плавлении металла. Она вызывает также диссоциацию (распад) молекул кислорода, азота и паров воды. В атомарном состоянии газы, обладая высокой химической активностью, интенсивно взаимодействуют с расплавленным металлом шва. Поэтому одной из серьезных задач при сварке плавлением является защита сварочной ванны от вредного воздействия воздуха и предотвращение попадания в металл шва вредных веществ (влаги, ржавчины, минеральных масел и т. п.). Кроме того, высокая температура способствует выгоранию примесей и тем самым изменяет химический состав свариваемого металла.

 

Небольшой объем ванны расплавленного металла (при ручной сварке -0,5-1,5 см3, при автоматической сварке - 24-300 см3) и интенсивный отвод теплоты в окружающий ванну металл не дают возможности полностью завершиться всем реакциям взаимодействия между жидким металлом, газами и расплавленным шлаком. Большие скорости нагрева и охлаждения значительно ускоряют процесс кристаллизации и, соответственно, приводят к образованию закалочных структур, трещин и других дефектов. Под воздействием теплоты происходят структурные изменения в металле околошовной зоны, которые приводят к ослаблению сварного шва.

 

Рассмотрим взаимодействие расплавленного металла сварного шва с газовой средой, которая состоит главным образом из кислорода, азота и водорода. Кислород, поступающий в зону сварки из воздуха и покрытия электродов, является наиболее вредной примесью, и его повышенное содержание в сварном шве приводит к понижению прочности, пластичности, вязкости и антикоррозионных свойств шва.

 

С железом кислород образует три вида оксидов: FeO, Fe203, Fe304. Наиболее отрицательное воздействие оказывает FeO, который хорошо растворяется в расплавленном металле шва, но растворимость его зависит от содержания углерода в стали и температуры. С ростом температуры растворимость повышается. Поэтому при охлаждении стали происходит выпадение его из раствора. При высоких скоростях охлаждения сварного шва часть оксидов FeO остается в растворе, образуя шлаковые прослойки между зернами металла, при этом повышая порог хладноломкости, т. е. температуру, при которой металл теряет пластичность. Для швов с повышенным содержанием FeO этот порог составляет -10...-15 °С.

 

Азот в зону сварки попадает из воздуха и в зоне сварки находится как в молекулярном, так и в атомарном состоянии. Атомарный азот более активно растворяется в расплавленном металле сварочной ванны, чем молекулярный, образуя при этом нитриды железа (Fe2N, Fe4N), марганца (MnN) и кремния (SiN), которые, в свою очередь, снижают пластичность и повышают твердость наплавленного металла. На степень насыщения металла шва азотом оказывают влияние режимы сварки и охлаждения. Медленное охлаждение шва способствует удалению из него газообразною азота. При больших скоростях охлаждения азот не успевает полностью выделиться и составляет с металлом перенасыщенный твердый раствор. Такой азот со временем становится причиной старения металла шва и снижения его механических свойств.

 

Водород в зоне сварки образуется во время диссоциации водяных паров при высокой температуре дуги. Водяные пары поступают в зону сварки из атмосферной влаги, а также из влаги, содержащейся в покрытии электродов, флюсах, ржавчине на кромках заготовок и т. п. Молекулярный водород при дуговой сварке распадается на атомарный, который хорошо растворяется в расплавленном металле. Атомарный водород, растворяясь в жидком металле, может оставаться в таком состоянии до тех пор, пока температура не опустится примерно до 200 °С. При дальнейшем понижении температуры водород из атомарного состояния переходит в молекулярное, вызывая при этом значительные внутренние напряжения и, как следствие, образование флокенов. Гидриды и флокены снижают прочность и пластичность металла шва, что, в свою очередь, приводит к водородной хрупкости и образованию трещин Для уменьшения содержания в сварном шве водорода пользуются рядом практических приемов:

электроды и флюсы перед сваркой тщательно прокаливают;

кромки свариваемых заготовок и сварочную проволоку очищают от влаги, грязи и ржавчины;

швы выполняют с минимальным числом проходов, так как при наложении последующего шва предыдущий шов в момент вторичного расплавления насыщается водородом;

при выполнении сварочных работ на открытой площадке обеспечивают защиту зоны сварки от атмосферных осадков;

сварку ответственных конструкций выполняют только при положительных температурах.

 

Металлургические процессы в зоне сварки плавлением. Кристаллизация металла сварочной ванны

В процессе сварки по мере перемещения источника тепла вслед за ним перемещается и сварочная ванна. При этом в задней части ванны расплавленный металл охлаждается и, затвердевая, образует сварной шов. Кристаллизация металла сварочной ванны начинается у границы с нерасплавившимся основным металлом в зоне сплавления. Различают кристаллизацию первичную и вторичную. Первичной кристаллизацией называют процесс перехода металлов и сплавов из расплавленного состояния в твердое. Первичная кристаллизация металла сварочной ванны начинается от частично оплавленных зерен основного или ранее наплавленного металла и продолжается по нормали от линии расплавления.

 

Первичная кристаллизация металла сварочной ванны протекает периодически, так как периодически ухудшается теплообмен, периодически выделяется скрытая теплота кристаллизации. Это приводит к слоистому строению металла шва и к появлению ликвации. Толщина закристаллизовавшихся слоев зависит от объема сварочной ванны и скорости охлаждения металла и колеблется от долей миллиметра до нескольких миллиметров.

 

Ликвация - это отделение легкоплавкой составляющей сплава от остальных, встречается в сплавах, имеющих широкий интервал температур плавления. Зональная (слоистая) ликвация проявляется в неоднородности химического состава металла шва в периферийной и центральной зонах. Это является следствием того, что металл периферийных зон затвердевает раньше и поэтому содержит меньше примесей, чем металл центральных зон. Большое влияние на величину ликвации оказывает температурный интервал кристаллизации. Чем меньше температурный интервал кристаллизации, тем ниже уровень ликвации. Например, в низкоуглеродистых сталях, имеющих интервал кристаллизации 25-35 °С, ликвация незначительна. С увеличением содержания в стали углерода температурный интервал кристаллизации возрастает, и степень ликвации повышается.

 

Вторичная кристаллизация происходит после завершения первичной и характеризуется сменой кристаллических решеток и изменением структуры, т.е при вторичной кристаллизации металла происходит изменение форм зерен. Вторичная кристаллизация характерна только для металлов, испытывающие полиморфные превращения (железо, кобальт, титан, марганец и некоторые другие), и в значительной степени зависит от химического состава металла, скорости охлаждения, а также ряда других факторов. Теплота, выделяемая при сварке, распространяется в основной металл. При этом по мере удаления от границы сплавления скорость и максимальная темпера тура нагрева металла снижаются. Вследствие этого в зоне основного металла про исходят фазовые и структурные изменения, которые влияют на прочность сварного соединения. Зону основного металла, прилегающую к сварочной ванне, называют зоной термического влияния. Температура нагрева в зоне сварки колеблете! от температуры точки плавления до начальной температуры основного металл.

 

Строение структуры металла в зоне термического влияния и размеры этой зоны зависят от химического состава, толщины основного металла, способа и режима сварки, а также от термического цикла сварки и других факторов. Зона сплавления расположена рядом с металлом шва и является важным участком зоны. Этот участок формируется из жидкой и твердой фаз, и в нем происходит сращивание основного и наплавленного металлов, протекают диффузионные процессы, развивается химическая неоднородность и происходит образование общих кристаллов. Участок представляет собой узкую полосу, измеряемую десятыми, а иногда и сотыми долями миллиметра в зависимости от способа сварки. Свойства участка зоны сплавления часто оказывают решающее влияние на прочность и работоспособность наплавленного слоя. На этом участке обычно образуются трещины, ножевая коррозия, усталостные разрушения и т. п. Поэтому правильное его формирование имеет большое значение.

 

Участок перегрева включает в себя металл, нагреваемый до температуры, близкой к температуре плавления. Этот участок характеризуется крупнозернистой структурой. Металл на этом участке претерпевает аллотропические превращения: а-железо переходит в у-железо, и в результате значительного перегрева происходит рост зерна. Эта часть зоны термического влияния - наиболее слабое место. Она приобретает большую хрупкость и низкую прочность по сравнению с основным металлом. Перегрев снижает прочность и пластичность металла и особенно опасен для сталей, склонных к образованию закалочных структур. Выбор рациональной технологии сварки сводится, в первую очередь, к обеспечению наименьшего ухудшения свойств металла в этой части.

Участок перекристаллизации или нормализации характеризуется наиболее мелкозернистой структурой, образующейся при температуре 900- 1100°С. При нагреве и охлаждении металла на этом участке происходит перекристаллизация и значительное измельчение зерна. Метал участка приобретает высокие механические свойства и имеет наилучшую прочность и пластичность. Участок неполной перекристаллизации характеризуется температурой 720-880 °С. Этой температуры оказывается недостаточно, чтобы полностью изменить структуру основного металла в мелкозернистую. Поэтому в этой зоне наряду с зернами основного металла имеются зерна, образующиеся при перекристаллизации. Этот участок имеет достаточную прочность и мало влияет на прочность сварного соединения. Участок рекристаллизации формируется в пределах температур 500-700 °С, при которых происходит восстановление формы и размера зерен, разрушенных или деформированных при обработке давлением основного металла. В металле, не подвергавшемся деформации, структурных изменений в этой зоне не происходит.

 

Участок синеломкости, нагреваемый до температуры 500 °С и ниже, структурным изменениям не подвергается. Металл данного участка по структуре не отличается от основного. Однако металл участка имеет несколько пониженные пластичность и вязкость и повышенную склонность к образованию трещин. При сварке низкоуглеродистых сталей с повышенным содержанием газов возможно резкое падение ударной вязкости, которое можно объяснить старением металла после холодной деформации. Структурные изменения основного металла в зоне термического влияния мало отражаются на механических свойствах низкоуглеродистой стали при сварке ее любыми способами. Однако при сварке некоторых конструкционных сталей в зоне термического влияния может происходить образование закалочных структур, которые резко снижают пластические свойства сварных соединений и часто являются причиной образования трещин.

Свариваемость металлов и сплавов

Под свариваемостью понимают способность металлов образовывать соединения, механические и другие эксплуатационные свойства которых находятся на уровне основного металла. Свариваемость может быть оценена конкретными количественными характеристиками. В зависимости от назначения и условий эксплуатации конструкции определяют:

склонность к образованию горячих и холодных трещин в металле шва и зоне термического влияния;

склонность к образованию пор;

механические свойства;

коррозионную стойкость;

химический состав и другие свойства.

 

 

Свариваемость определяется не только свойствами металла - она зависит от способа и режима сварки, состава сварочных материалов, конструктивного оформления сварного узла, условий эксплуатации изделий. Различают физическую, технологическую и эксплуатационную свариваемость. Физическая свариваемость определяется процессами, происходящими на границе соприкосновения свариваемых изделий при различных физико-химических методах соединения металлов (физический контакт, химическое взаимодействие, рекристаллизация и т. п.). Под технологической свариваемостью понимают возможность получения сварного соединения определенным способом сварки. Технологическая свариваемость влияет на выбор параметров режима сварки и технологическую последовательность выполнения работ. Под эксплуатационной свариваемостью понимают условия допустимого применения материалов в сварных конструкциях и сварных изделиях .







Дата добавления: 2015-08-12; просмотров: 3222. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия