Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бинарные деревья





Бинарные деревья являются деревьями со степенью не более двух.

Бинарное (двоичное) дерево – это динамическая структура данных, представляющее собой дерево, в котором каждая вершина имеет не более двух потомков (рис. 31.3). Таким образом, бинарное дерево состоит из элементов, каждый из которых содержит информационное поле и не более двух ссылок на различные бинарные поддеревья. На каждый элемент дерева имеется ровно одна ссылка.


Рис. 31.3. Бинарное дерево и его организация

Каждая вершина бинарного дерева является структурой, состоящей из четырех видов полей. Содержимым этих полей будут соответственно:

  • информационное поле (ключ вершины);
  • служебное поле (их может быть несколько или ни одного);
  • указатель на левое поддерево;
  • указатель на правое поддерево.

По степени вершин бинарные деревья делятся на (рис. 31.4):


Рис. 31.4.

  • строгие – вершины дерева имеют степень ноль (у листьев) или два (у узлов);
  • нестрогие – вершины дерева имеют степень ноль (у листьев), один или два (у узлов).

В общем случае у бинарного дерева на k -м уровне может быть до 2k-1 вершин. Бинарное дерево называется полным, если оно содержит только полностью заполненные уровни. В противном случае оно является неполным.

Дерево называется сбалансированным, если длины всех путей от корня к внешним вершинам равны между собой. Дерево называется почти сбалансированным, если длины всевозможных путей от корня к внешним вершинам отличаются не более, чем на единицу.

Бинарное дерево может представлять собой пустое множество. Бинарное дерево может выродиться в список (рис. 31.5).


Рис. 31.5. Список как частный случай бинарного дерева

Структура дерева отражается во входном потоке данных так: каждой вводимой пустой связи соответствует условный символ, например, '*' (звездочка). При этом сначала описываются левые потомки, затем, правые. Для структуры бинарного дерева, представленного на следующем рисунке 6, входной поток имеет вид: ABD*G***CE**FH**J**.


Рис. 31.6. Адресация в бинарном дереве

Бинарные деревья могут применяться для поиска данных в специально построенных деревьях (базы данных), сортировки данных, вычислений арифметических выражений, кодирования (метод Хаффмана) и т.д.

Описание бинарного дерева выглядит следующим образом:

struct имя_типа {

информационное поле;

[служебное поле;]

адрес левого поддерева;

адрес правого поддерева;

};

где информационное поле – это поле любого ранее объявленного или стандартного типа;

адрес левого (правого) поддерева – это указатель на объект того же типа, что и определяемая структура, в него записывается адрес следующего элемента левого (правого) поддерева.

Например:

struct point {

int data;//информационное поле

int count; //служебное поле

point *left;//адрес левого поддерева

point *right;//адрес правого поддерева

};

Основными операциями, осуществляемыми с бинарными деревьями, являются:

  • создание бинарного дерева;
  • печать бинарного дерева;
  • обход бинарного дерева;
  • вставка элемента в бинарное дерево;
  • удаление элемента из бинарного дерева;
  • проверка пустоты бинарного дерева;
  • удаление бинарного дерева.

Для описания алгоритмов этих основных операций используется следующее объявление:

struct BinaryTree{

int Data; //поле данных

BinaryTree* Left; //указатель на левый потомок

BinaryTree* Right; /указатель на правый потомок

};

..........

BinaryTree* BTree = NULL;

Приведем функции перечисленных основных операций при работе с бинарным деревом.

//создание бинарного дерева

void Make_Binary_Tree(BinaryTree** Node, int n){

BinaryTree** ptr;//вспомогательный указатель

srand(time(NULL)*1000);

while (n > 0) {

ptr = Node;

while (*ptr!= NULL) {

if ((double) rand()/RAND_MAX < 0.5)

ptr = &((*ptr)->Left);

else ptr = &((*ptr)->Right);

}

(*ptr) = new BinaryTree();

cout << "Введите значение ";

cin >> (*ptr)->Data;

n--;

}

}

 

//печать бинарного дерева

void Print_BinaryTree(BinaryTree* Node, int l){

int i;

if (Node!= NULL) {

Print_BinaryTree(Node->Right, l+1);

for (i=0; i< l; i++) cout << " ";

printf ("%4ld", Node->Data);

Print_BinaryTree(Node->Left, l+1);

}

else cout << endl;

}

 

//прямой обход бинарного дерева

void PreOrder_BinaryTree(BinaryTree* Node){

if (Node!= NULL) {

printf ("%3ld",Node->Data);

PreOrder_BinaryTree(Node->Left);

PreOrder_BinaryTree(Node->Right);

}

}

 

//обратный обход бинарного дерева

void PostOrder_BinaryTree(BinaryTree* Node){

if (Node!= NULL) {

PostOrder_BinaryTree(Node->Left);

PostOrder_BinaryTree(Node->Right);

printf ("%3ld",Node->Data);

}

}

 

//симметричный обход бинарного дерева

void SymmetricOrder_BinaryTree(BinaryTree* Node){

if (Node!= NULL) {

PostOrder_BinaryTree(Node->Left);

printf ("%3ld",Node->Data);

PostOrder_BinaryTree(Node->Right);

}

}

 

//вставка вершины в бинарное дерево

void Insert_Node_BinaryTree(BinaryTree** Node,int Data) {

BinaryTree* New_Node = new BinaryTree;

New_Node->Data = Data;

New_Node->Left = NULL;

New_Node->Right = NULL;

BinaryTree** ptr = Node;//вспомогательный указатель

srand(time(NULL)*1000);

while (*ptr!= NULL) {

double q = (double) rand()/RAND_MAX;

if (q < 1/3.0) ptr = &((*ptr)->Left);

else if (q > 2/3.0) ptr = &((*ptr)->Right);

else break;

}

if (*ptr!= NULL) {

if ((double) rand()/RAND_MAX < 0.5)

New_Node->Left = *ptr;

else New_Node->Right = *ptr;

*ptr = New_Node;

}

else{

*ptr = New_Node;

}

}

 

//удаление вершины из бинарного дерева

void Delete_Node_BinaryTree(BinaryTree** Node,int Data){

if ((*Node)!= NULL){

if ((*Node)->Data == Data){

BinaryTree* ptr = (*Node);

if ((*Node)->Left == NULL && (*Node)->Right == NULL) (*Node) = NULL;

else if ((*Node)->Left == NULL) (*Node) = ptr->Right;

else if ((*Node)->Right == NULL) (*Node) = ptr->Left;

else {

(*Node) = ptr->Right;

BinaryTree ** ptr1;

ptr1 = Node;

while (*ptr1!= NULL)

ptr1 = &((*ptr1)->Left);

(*ptr1) = ptr->Left;

}

delete(ptr);

Delete_Node_BinaryTree(Node,Data);

}

else {

Delete_Node_BinaryTree(&((*Node)->Left),Data);

Delete_Node_BinaryTree(&((*Node)->Right),Data);

}

}

}

 

//проверка пустоты бинарного дерева

bool Empty_BinaryTree(BinaryTree* Node){

return (Node == NULL? true: false);

}

 

//освобождение памяти, выделенной под бинарное дерево

void Delete_BinaryTree(BinaryTree* Node){

if (Node!= NULL) {

Delete_BinaryTree(Node->Left);

Delete_BinaryTree(Node->Right);

delete(Node);

}

}

Листинг. (html, txt)







Дата добавления: 2015-08-12; просмотров: 1756. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия